Principles and Practice of Clinical Electrophysiology of Vision

Editors

John R. Heckenlively, M.D.
Professor of Ophthalmology
Jules Stein Eye Institute
Los Angeles, California

Geoffrey B. Arden, M.D., Ph.D.
Professor of Ophthalmology and Neurophysiology
Institute of Ophthalmology
Moorfields Eye Hospital
London, England

Associate Editors

Emiko Adachi-Usami, M.D.
Professor of Ophthalmology
Chiba University School of Medicine
Chiba, Japan

G.F.A. Harding, Ph.D.
Professor of Neurosciences
Department of Vision Sciences
Aston University
Birmingham, England

Sven Erik Nilsson, M.D., Ph.D.
Professor of Ophthalmology
University of Linköping
Linköping, Sweden

Richard G. Weleber, M.D.
Professor of Ophthalmology
University of Oregon Health Science Center
Portland, Oregon
Index

A
Abetalipoproteinemia: hereditary, electroretinography in, 506
Absolute threshold, 445
Abuse: drugs of, and visual nervous system, 170
Accommodation
 aging and, 423
 amplitude, objective, 423
 Action potentials: from on/off ganglion cell, 367
Acuity
 (See also Visual acuity)
 grating
 in infant, 408–409
 tests, 462
 monocular, measurement, 413
 relation of visual evoked potentials to, 136
 vernier, in infant, 409–410
Adaptation
 dark (see Dark adaptation)
 effects in electroretinography, 391–395
 light (see Light adaptation)
Adaptometry, dark, 449–454
 in thioridazine retinopathy, 604
 two-color, in vitamin A deficiency, 739
Adenoma: chromophobe, 559
Adenosine: retinal effects of, 156–157
 Adrenergic
 beta- (See Beta-adrenergic) transmitters,
 beta-adrenergic antagonists action to, 156
 Age
 changes in visual evoked cortical potentials, 417–420
 effect of, in electroretinography, 376
 electroretinography and, pattern, 294
 of onset
 of retinitis pigmentosa, 519–520
 of Stargardt's disease, 669–670
 P100 peak latency and, 420
 Agglutinin: peanut agglutinin-binding molecules, 58
Aging
 accommodations and, 423
 contrast thresholds and, 420–421
 luminance threshold and, 421–422
 peak latency changes with, 418–420
 pupillary size and, 423
 temporal frequency characteristics and, 420
 visual evoked cortical potential and, pattern, 417–424
Albinism, 425–434, 773–782
 data analysis, 433
 electrode montage in, 427, 433
 genotype in, 774
 luminance flash in, 432
 pattern-onset in, 429, 431
 response, analysis procedures in, 427
 pattern onset and offset, 426, 432
 pedigree in, 777, 778
 phenotype in, 774
 stimulus mode for, 433
 test protocol, 433
 testing methodology, 425–434
 visual evoked cortical potentials in, methods, overview, 433
 visual evoked potential topography in, 430
Alcoholism, 575
 Alpha-aminoadipic acid, 103
 Alzheimer's disease
 electroretinography in, pattern, 795
 evoked potentials in, 793–796
 Amacrine cells: in retina (in monkey), 36
 Amblyopia: and clinical electrophysiology, 589–593
 α-Aminoadipic acid, 103
 Amplification
 double-sided, principle of, 387
 synchronous, 250–252
 system, standard in ERG, 287
Amplifiers, 183–188
 alternating current, 185
 bias, 185
 calibration of, 194–195
 direct current, 185
 double-sided, and mains hum reduction, 386–387
 dynamic range, 185
 frequency response function, 186
 gain of, 185
 impedance, input and output, 185
 linearity, 185
 phase distortion and, 187–188
 preamplifiers, 183–185
 saturation, artifacts in, 389–390
Amplitude
 aging and, changes, 417–418
 objective, of accommodation, 423
Analog filters, 186–187
Analysis, 229–276
 data, 229–276
 Fourier (see Fourier analysis)
 kernel (see Kernel)
 signal (see Signal analysis)
 system, and cross-correlation, 248–249
Analysis (cont.)
techniques, 231–253
 correlation with noise
 and power spectrum,
 246–249
Anesthetics: and visual nervous system, 169
Angiography, fluorescein, 494–500
 as adjunct to
electrophysiological testing, 494–500
 in atrophy gyrate, 654
 in Bietti’s crystalline dystrophy, 684, 686
 in choroiretina, 494–496, 660, 661
 carrier, 663
 dark choroid effect and, 497–499
 in diabetic retinopathy, 626, 628, 629, 632
 in macular schisis vs.
edema, 496–497
 of maculopathy, 672
 in night blindness, incomplete-type, 722, 724
 in optic atrophy with disc telangiectasia, 499
 in pattern dystrophy/
retinal pigment epithelium disease, 497
 principles of, basic, 494
 in reticular dystrophy, 701
 in retinal diseases, hereditary, 494–500
 in retinitis pigmentosa, preserved
para-articular retinal pigment epithelial, 497
 in Stargardt’s disease, 670, 671–672
 in Usher syndrome, type I, 496
Anticholinergics: and visual nervous system, 169
Antiepileptics: and visual nervous system, 169
Arden ratios, 644
Arteries (see Retina, artery)
Artifact(s)
 in amplifier saturation, 389–390
 causes, 384–390
 cures, 384–390
 eye movements, 388–389
 muscle, 388–389
 occurring in new clinic, 384–385
 recognition in visual evoked cortical potential recording, 438–439
 rejection, 195
Astrocyte: in retina (in cat), 39
Atrophy
 fovea (see Fovea, atrophy)
 gyrate
 angiography of, fluorescein, 654
 of choroid and retina (see below)
 dark adaptation curves in, 654
 Goldmann perimetry in, 653
 muscle biopsy in, 655
 pyridoxine-responsive, 650–651, 652
 gyrate, of choroid and retina, 649–658
 biochemistry, 653–655
 clinical description, 651
 diagnosis, differential, 656
 genetics of, molecular, 655–656
 histopathology, 651–652
 history of disease, 649–651
 natural history, 631
 physiology, 652–653
 testing in, relevant, 656
 optic (see Optic atrophy)
Autocorrelation, 246–247
 functions of, 247
Autosomal
dominant cone dystrophy, 542
recessive cone dystrophy, 542
Averaging, 249–250
 practical considerations on,
 250
 response fluctuations, 250
 signal-noise ratio
 improvement with, 249–250
 small signals, 389–390
 stimulus for, 249
 a-wave
 amplitude, drugs reducing, 168
 in retinal damage, 534
B
Background illumination (see Illumination, background)
 b/w-wave amplitude ratios: in
retinal vascular disease, 531–536
 Best’s disease, 692–699
 clinical observations, 692
diagnosis, differential, 692–693
electro-oculography in, 695, 696–697
electrophysiological tests
 in, 694–696
 fundus in, 693
 histopathology, 693–694
 linkage analysis, 694
 stages of, 693
 synonyms, 693
Beta-adrenergic
 agonists, action of, 156
 antagonists, action to
 adrenergic transmitters, 156
 mechanisms in retina, 155–156
Beta-2-adrenergic agonists:
clenbuterol as, 155
Bicarbonate responses, 163–166
Bietti’s crystalline dystrophy of
cornea and retina, 495, 683–691
clinical description, 683–689
cornea in, 689
diagnosis, differential, 690
findings in, 690
Ganzfeld ERGs in, 688
Goldmann perimeter
 visual fields for, 685, 686, 687
histopathology, 689
history, 683
natural history, 683–689
 physiology, 689
 relevant testing, 690
ultrastructure in, 689, 690
Binary sequence control:
effect of, 257
Biology: retinal cell, principles of, 23–84
Biopsy: muscle, in gyrate
 atrophy, 655
Birdshot chorioretinitis, 640–642
fundus in, 641
Blindness
 color, early receptor potential in, 319
cortical, 578–580
 causes, 578
 retrochiasmal lesions and, 562
 visual evoked cortical potentials in, 378–380
 visual evoked cortical potentials in, works
 reporting abnormal potentials, 579
 visual evoked cortical potentials in, works
 reporting normal potentials, 579
 visual evoked cortical potentials in, works
 reporting potentials recovery with visual
 improvements, 579–580
 visual signs, general clinical, 578
 night (see Night blindness)
Blue cone monochromatism, 753–755
Bone spicule: after
 chloroquine, 595
Buffer process: K+ spatial, of
glial cell, 88
Buffering: K+ spatial, 87–88
Burian-Allen
 contact lens, 381
electrodes, problems with,
 381–382
b-wave, 101–111
amplitudes of, 289
 (in cat), 102
 drugs increasing, 168
 drugs reducing, 168
 linear regression, 378–379
 reduction, relationship to
 Ganzfeld fields, 393
 rod, change in dark after
 Ganzfeld field, 394
 V-log intensity curves of, 154
beta-adrenergic agents
 and, 156
 conduction
 amplitude, 349
 implicit time, 349
 implicit time
distributions, 350
 implicit time, relationship to
 Ganzfeld fields, 393
 implicit time, scatter plot
 and linear regression, 350
 current source density
 profiles, 104, 105
DC component of, 108–109
 generation
 alternate theories, 108
 mechanism of, 103–105
 implicit times, 289
 in retinal vein occlusion, central, 617
 for retinal vein
 occlusion, central, with NVL, 615
 in lipofuscinosis, neuronal ceroid, 790
Müller cell origin of,
 101–103
alpha-aminoacidic acid, 103
Calcium concentration: at synaptic terminal of rod, 77
Calibration, 193–204
of amplifiers, 194–195
of delays due to filtering, 195
of flash with digital photometer, 202
luminance with subjective photometer, 202
of gain, 194–195
procedures in electroretinography, 382
Carrier
detection, introduction to, 709–710
state in congenital stationary night blindness, 711–712
Cataract
effect on electroretinography, 379
focal ERG in, 336–337
in juvenile neuronal ceroid lipofuscinosis, 788
Cathode ray tubes, 218
Cell
ganglion (see Ganglion cell)
glial (see Glial cell)
Müller (see Müller cell)
photoreceptor (see Photoreceptor cell)
pigmented epithelium of retina, cytology and function, 59
postsynaptic (see Postsynaptic cells)
retina (see Retina, cell)
rod, responses of, 78
Central nervous system
dysfunction, 761–813
Ceroid lipofuscinosis (see Lipofuscinosis, neuronal ceroid)
cGMP cascade: of phototransduction, 74

Checkerboard
contrast-reversing potential waveshapes elicited by, 269
Fourier analysis and, 244–246
stimuli, comparison with grating stimuli, 409
Chiasmal lesions, 557–560
Children
electroretinography of, under halothane, 357
Hospital for Sick Children Study in developmental delay, 582–583
lipofuscinosis (see Lipofuscinosis, neuronal ceroid, juvenile)
management for testing, 279–280
retinitis pigmentosa inversa, juvenile-onset, 677
retinoschisis, 496
X-linked juvenile (see Retinoschisis, X-linked juvenile)
testing, 281–282
visual acuity estimation (see Infant, visual acuity estimation in)
Chloroquine
foveal atrophy after, 595
retinal toxicity due to, 594–599
Chlorpromazine, 604–605
Cholinergics; and visual nervous system, 169
Chorioretinitis, birdshot, 640–642
fundus in, 641
Choroid
atrophy, gyrate (see Atrophy, gyrate, of choroid)
dark choroid effect angiography and, fluorescein, 497–499
in Stargardt’s disease, 498
relationships in central retina, light micrograph of (in monkey), 54
Choroideremia, 659–663
angiography in, fluorescein, 494–496, 660, 661
carriers, 662–663
angiography in, fluorescein, 663
clinical findings in, 660–663
diagnosis, differential, 663
ERG parameters in, 662
in hemizygotes, male, 660–662
heterozygotes, 662–663
X-linked carrier state evaluation, 744–747
Chromatic recordings: in electroretinography, 339–347
Chromatity diagram: CIE 1931, 219
Chromophobe adenoma, 559
CIE 1931 chromatity diagram, 219
Circuit(s)
equivalent electrical, for current pathways in eye, 89
of postsynaptic cell, 81
retinal, scheme of, 152
specialized, 44–45
voltage drive of, flash stimulator, 223
Circuitry
for cone signals through retina, 41–43
for rod signals through retina, 39–41
Clenbuterol, 155
Clinical testing principles, 569
Coat’s reaction: in simplex retinitis pigmentosa, 499
Color
blindness, early receptor potential in, 319
in ERG, pattern, 298
production, 218–219
sense abnormality in multiple sclerosis, 807–808
stimuli filters, 216–217
production of, 215–217
vision disorders, and rod-cone interaction, suppressive, 472
in Leber’s hereditary optic atrophy, 763
in Sorsby’s fundus dystrophy, 705
visual evoked potential (see Visual evoked potential, cortical, color)
Common-mode rejection, 387
ratio, 185
Computer
program for band-pass filter, 205–206
simulation of electro-oculography, 306
Conductance: changes mediated by r-glutamate, 79–80
Cone
blue cone monochromatism, 753–755
b-wave (see b-wave, cone)
degeneration
clinical features, 539–541
with drusen, familial, and senile, 680
optic atrophy in, temporal, 541
partial, 542
signs and symptoms, 539–541
disorders, management of, 543
dysfunction, 537–543
hereditary forms, 537
hereditary forms, known, 541–542
partial, 542
syndromes, 512
dystrophy, 537–543
autosomal dominant, 542
autosomal recessive, 542
early potential receptor in, 319
electroretinography in, 538
fovea centralis atrophy in, 540
hereditary forms, known, 541–542
macula in, 540
progressive, 512
dystrophy, X-linked recessive, 756–760
biochemistry, 757–758
clinical description, 756–757
diagnosis, differential, 758–760
Ganzfeld EOG in, 759
Ganzfeld ERGs in, 758
Goldmann-Weekers dark adaptometry in, 759
histopathology, 757–758
history of disease, 756
natural history, 756–757
pathophysiology, 757–758
testing in, 758–764
electroretinography (see Electroretinography, cone)
perimetry (see Perimetry, rod and cone)
testing, results for
temporal frequencies, 468
significance of, 465
spatial, 467
sensitivity, 468
temporal, 466–467
thresholds
aging and, 420–421
mean, 421
vs. pupillary area, 422
Cone
Bietti’s dystrophy (see
Bietti’s crystalline
dystrophy of cornea)
direct DC recording of
ERG, 330
opacity, effect on
electroretinography, 379
recording, direct,
electrodes for, 180
toxicity, 594
Cross-correlation: and
system analysis,
248–249
c-wave, 91–92
in diseases of pigment
epithelium, 545–546
normal, 544–545
“off,” 546
Cyclic nucleotide cascade,
72–73

D
Dark adaptation
basic clinical, 449–454
curve(s)
in atrophy, gyrate, 654
in drusen, 667
in night blindness, 454
normal, 451
normal, typical, 450
in Oguchi’s disease, 716
in electroretinography, 375
cone, 394
rod, 394–395
in fundus albipunctatus,
718, 733
psychophysical, in night
blindness, 718, 733
in retinitis pigmentosa, 520
in retinoschisis, X-linked
juvenile, 728
Dark adaptometry (see
Adaptometry, dark)
Data
acquisition, 229–276
systems, special-purpose
(see Special-purpose
data acquisition systems)
analysis (see Analysis)
Defocusing: and
pattern-onset
stimulation, 439
Dementia: senile, of
Alzheimer’s type, pattern
electroretinography in,
795
Depression: spreading, 130
Deutan(s)
patients, early receptor
potential in, 344–346
rapid off-response in,
339–344
Developmental delay,
581–584
clinical description, 581
diagnosis, differential, 584
electrophysiological
findings, 581–583
historical, 581–582
Hospital for Sick
Children Study, 582–583
electroretinography in,
581–584
pathophysiology,
583–584
P100 latency in, 583
in prematurity, 586, 587
visual evoked cortical
potentials in, 581–584
flash, 585–588
Diabetes mellitus
electroretinography to
detect early functional
abnormality, 624
flash response in, 320
retinopathy in (see
Retinopathy, diabetic)
Diamox responses, 163–166
Digital
filters, 186–187
band-pass (see Filter,
band-pass, digital)
photometer for flash
calibration, 202
Diodes (see Light-emitting
diodes)
Disc telangiectasia: with
optic atrophy, 499
Display system: standard in
ERG, 287
Display tubes, 217–219
color production, 218–219
description, general, 217
patterns/contrast
production, 217–218
Diurnal patterns: in visual
evoked cortical
potential recording, 438
L-Dopa: and visual nervous
system, 168
Drugs
of abuse and visual
nervous system, 170
a-wave amplitude and, 168
b-wave amplitude and, 168
neuropsychiatric effects
on visual nervous
system, 167–173
for psychiatric conditions,
167–168
and retinal
electrophysiology,
151–162
concentration
estimation, 152–153
drug application,
151–153
experimental
preparations, 151–153
interpretations of effects,
151–153
systemic drugs and
retinal side effects, 158
toxicity pathogenesis, 598
visual evoked potentials
amplitude and, 168
Drusen
dark adaptation curves
from, 667
dominant, 664–668
clinical findings, 664–665
definition, 664
electrophysiology of,
665–668
psychophysics of,
665–668
electroretinography in, 667
familial, with cone
degeneration and
scotoma, 680
inherited, 668
DTL fiber electrodes,
179–180
“Dummy patients:” diagrams
of, 388
Duplicity theory, 448–449
d-wave, 112–114
ERGs with (in mammal),
113
Dystrophy
Bietti’s (see Bietti’s
crystalline dystrophy)
cone (see Cone dystrophy)
pattern, 700–706
clinical findings, 700–701
electro-oculography in,
701, 704
electroretinography in,
703
physiological findings,
701–704
pigmentation in, 703
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>retinal pigment epithelium disease</td>
<td>497</td>
</tr>
<tr>
<td>reticular</td>
<td>701</td>
</tr>
<tr>
<td>rod-cone (see Rod-cone dystrophy)</td>
<td>705</td>
</tr>
<tr>
<td>Sorsby's fundus</td>
<td>705</td>
</tr>
</tbody>
</table>

E

Early receptor potential (see Receptor potential, early) | 855

Edema, macular, 524 vs. schisis, fluorescein angiography in | 496–497

E-ERG analysis (in cat) | 8

Einthoven and Jolly: ERG recording | 6

Electric current: transretinal, retinal potentials evoked by | 129–130

Electrical changes produced by light | 69–72

Equivalent circuit for current pathways in eye | 89

Electrode(s) | 177–182

Burian-Allen problems with, 381–382 | 381

cleaning, standard in ERG, 285 | 285

contact lens, 178–179 | 178

of Biggs, 10 | 10

for corneal recording, direct, 180 | 180

DTL fiber, 179–180 | 179

electrode-oculogram, 180–181 | 180

for electrophysiological testing, 177–182 | 177

electroretinographic, 177–180 | 177

in electroretinography, pattern (see Electroretinography, pattern, electrodex) | 338

gold foil lid-hook, 179 | 179

ground, standard in ERG, 285 | 285

impedance, measurement of, 194 | 194

montage in albinism, 427, 433 oculargram electrodes, 180–181 | 180

placements standard, 92 | 92

for visual evoked cortical potential recording, 399–406 | 399

positions, ten-twenty designations of, 402–406 | 402

problems, 387–388 checking for, 388 | 388

recording, standard in ERG, 285 | 285

reference, standard in ERG, 285 | 285

skin, 180 | 180

standard in ERG, 285 | 285

stability, standard in ERG, 285 | 285

standards in ERG, 285–286 for visual evoked cortical potential recording, 399 | 399

visual evoked response, 181 | 181

in vitreous humor (in cat), 109 | 109

Electron micrograph of cone of retina (in monkey), 29 pedicle, 30 | 29

of foveal neuropol, 35 | 35

of rods of retina (in monkey), 29 | 29

Electron microscopy: in lipofuscinosis, neuronal ceroid, juvenile, 789 | 789

Electronic noise sources, 184 | 184

recording equipment, standard in ERG, 287 | 287

Electro-oculography, 301–313 | 301

applications, clinical, 308–309 | 308

in Best’s disease, 695, 696–697 | 695

clinical, 301 | 301

computer stimulation of, 306 | 306

in diabetic retinopathy, 625 | 625

dystrophy, pattern, 701, 704 | 704

eye movements, 302–303 in fundus albipunctatus, 734–735 | 734

history of, 14–16 | 14

light peak, 303–305 | 303

in melanoma, malignant, 644–645 | 644

models in, mathematical, 305–306 | 305

monitoring eye positions, 303 | 303

in night blindness, incomplete-type, 722 | 722

non-photic stimuli, 307 oscillation fast, 308 | 307

slow, 305, 307–308 | 305

principle of indirect recording, 301–302 | 301

response parameters, 305 special recording conditions, 306–307 | 306

Electrophosphoresophes: comparison with magnetophosphoresophes, 365–366 | 365

Electrophysiology amблиopia and, 589–593 | 589

drusen, dominant, 665–678 | 665

in fundus flavimaculatus, 681 | 681

in inflammatory states, 611–645 | 611

of Leber’s hereditary optic atrophy, 764 | 764

light-emitting diodes in (see Light-emitting diodes) in lipofuscinosis, neuronal ceroid, 786–789 | 786

parameters in retinitis pigmentosa, 510–527 in pituitary syndromes, 783–785 | 783

recording systems, digital filter for, 205–210 | 205

of retina (see Retina, electrophysiology) of Sorsby’s fundus dystrophy, 706 | 706

stimulators for (see Stimulators for electrophysiology) system, typical clinical, major components of, 190 | 190

testing angiography, fluorescein, as adjunct (see Angiography, fluorescein) in Best’s disease, 694–696 | 694

definitive, examples of, 490 | 490

electrodes for, 177–182 | 177

equipment for, 175–228 | 175

lesion localization by, 186 for anatomical techniques relevant to, 445 | 445

tests, correlation of results with clinical findings, 491–492 in tumors, 611–645 in vascular disease, 611–645 visual, history of, 1–22 | 1

Electroretinography (cont.)
 of sex, 377
 of vitreous hemorrhage, 379
 of vitreous substitute, 379–380
 electrodes, 177–180
 first published human
electroretinogram, 6–7
 five basic responses,
 diagram of, 284
 flash illumination in, 372
 flicker, 348–351
 focal, 334–338
 in cataract, 336–337
 cone amplitude, 335
 in macro holes, 337
 in maculopathy, 336
 normal values, 335
 stimulation, 373
 uses, clinical, 335–337
 in fundus albipunctatus,
 718, 733–74
 history of, 5–13
 early discoveries, 5–13
 i-ERG analysis, 7
 implicit times, 289–290
 in infant, 410
 intensity series, 353, 355,
 357
 intersession variability,
 380–381
 latencies, distribution of,
 289–290
 light adaptation in, 375
 light calibration in,
 373–374
 light stimulation in,
 371–376
 equipment and
 procedure for, 329–332
 in lipofuscinosis, neuronal
ceroid, 788
 measurements, standards
 for, 287–288
 monitoring
 in intensive care unit,
 607–610
 intraoperative, 607–610
 of Müller cell responses,
 103
 negative response
 near rod threshold, 352
 threshold, 353
 in night blindness (see
 Night blindness, congenital stationary,
 incomplete-type,
electroretinography in)
 normal
 with negative ERGs, 332
 values, 287
 variation, 376–378
ocular media changes in,
 379–381
origins
 anatomy, 89
 determination methods,
 88–89
 intracellular recordings,
 88
 ion recordings, 88–89
 pharmacology, 89
 in parkinsonism, 811–812
 pattern, 291–300
 age and, 294
 in Alzheimer’s disease,
 793
 amplitude, 291–292
 color in, 298
 contrast component,
 296–298
 defocus, 294
 electrodes, 292–294
 electrodes, corneal
 position, 293
 electrodes, penetrating
 microelectrodes, 295
 electrodes, reference
 position, 293–294
 evaluation of, 291–292
 in glaucoma, 549–556,
 766–772
 hints on useful clinical
 technique, 293
 latency, 292
 in Leber’s hereditary
 optic atrophy, 764
 luminance of, 296–298
 in multiple sclerosis,
 800
 normal, 292, 294
 in ocular hypertension,
 550, 766–772
 in optic nerve function,
 549–556
 origin, 294–295
 pupil size, 294
 recording, practical
 problems in recording
 reliable clinical results,
 292–294
 recording,
 “steady-state,” 292
 recording, “transient,”
 291–292
 research for, clinical and
 animal, 294–295
 spatial frequency,
 295–296
 stimulus parameters,
 295–298
 two fractions of,
 demonstration of, 297
 pigment epithelium
 responses, slow,
 328–329
 preparation of patient, 287
 fixation, 287
 pre-exposure to light,
 287
 properties of, summary of,
 7
 protocol, 287–288
 recording
 corneal dc, direct, 330
 dc, 329
 early, 5–6
 by Einthoven and Jolly
 in 1908, 6
 equipment for, 329–332
 with long time constant,
 323–324
 procedure, 329–332
 protocols, 328–333
 with short time
 constant, 325
 standards for, 287–288
 in Refsum’s disease, 507
 relation to PI, PII, and
 PIII, 7
 reporting of, 287–288
 responses, 288
 flicker, 288
 maximal, 288
 oscillatory potentials
 and, 288
 “rod,” 288
 single-flash “cone,” 288
 to various wavelengths of
 light, 11
 in retinal artery occlusion,
 617–618
 in retinal vein occlusion
 (see Retina, vein
 occlusion, central,
electroretinography)
 in retinitis pigmentosa (see
 Retinitis pigmentosa,
electroretinography in)
 X-linked recessive
 female carrier,
 heterozygote,
 detection, 741–743
 in retinoschisis, X-linked
 juvenile, 728
 rod, dark adaptation of,
 394–395
 scotopic threshold
 response, 122,
 352–362
 signal processing, 331
 standards for, 283–288
 stimulation for, local, 215
 stimulators for, 224–226
 subject preparation for,
 374–375
 technical issues in,
 371–383
 technology, basic,
 285–287
 in thioridazine
 retinopathy, 603
 of vessels in ischemia,
 613–618
 in vitamin A deficiency,
 738
 waveform
 changes characteristic of
 disease, 488–491
 “negative," disorders
 with, 489
 Embryological origins, 53–55
 EOG (see Electro-oculography)
 Epithelium (see Pigment
 epithelium)
 Equipment
 electronic recording,
 standard in ERG, 287
 for electrophysiological
 testing, 175–228
 for ERG recording,
 329–332
 monitoring, 193–204
 ERG (see
 Electroretinography)
 ERP (see Early receptor
 potential)
 Evoked potential(s)
 in Alzheimer’s disease,
 793–796
 topographical (see Mapping
 topographical evoked
 potential)
 visual (see Visual evoked
 potential)
 e-wave, 115
 Fye
 (See also Ocular)
 movements, 388–389
 fast oscillation trough,
 95–96
 intraocular recordings
 during, 95
 Feedback loops: in retina,
 45–47
 Filter(s)
 analog, 186–187
 band-pass, 186
 band-pass, computer
 program for, 205–206
 band-pass, digital,
 205–210
 comparisons with other
 filters, 206–207
 testing hints, 207
 band-reject, 186
Index 821

BP-FIR, 206
color stimuli, 216–217
digital, 186–187
high-pass, 186
low-pass, 186, 206
smoothing, digital, 206–207
3-dB, 207

Filtering
calibration of delays due to, 195
phase-free, 243
technique in oscillatory potential recording, 322

Flash
illumination in electoretinography, 372
luminance (see Luminance, flash)
response in diabetes, 320
stimulator, voltage drive circuit of, 223
visual evoked cortical potential in developmental delay, 585–588
visual evoked potential (see Visual evoked potential, flash)
visual evoked response (see Visual evoked response, flash)

Flicker, 465–466
electoretinography, 348–351
implicit time in diabetic retinopathy, 623
responses, 349

Fluorescein (see Angiography, fluorescein)

Fluorescence
light micrograph of cone matrix sheath, 62
microscopy of retinal radial section (in dogfish), 79
Focal electoretinography (see electoretinography, local)

Fourier analysis, 237–243
checkerboards and, 244–246
domains, 240–241
practical considerations on using, 241–243
spatial, 243–246
linearity, 243
receptive fields, 246
spatial frequency, 244
time vs. space, 243–244
square wave (see Square wave)

standard periodic signals, 238
test signals, 240
Fourier integral, 238–240
Fourier, Joseph, 237
Fourier spectrum of periodic impulses, 239

Fovea
atrophy centralis, in cone dystrophy, 540
after chloroquine, 595
development of, 56
light micrograph of (in monkey), 57
midget pathways in, 43–44
neural connections in, 44
neurite, electron micrograph of, 35
radial section through, 28
Full-field dome, 372

Fundus
abnormalities in night blindness, congenital stationary, 715–719
albipunctatus, 717–719, 730–736
clinical findings, 730–732
dark adaptation in, 718
dark adaptation curves from, 733
electro-oculography in, 734–735
electoretinography in, 718, 733–734
psychophysical test results in, 732
reflectometry in, fundus, 732–733
visual pigment regeneration in, 733
in Best’s disease, 693
in choroiditis, birdshot, 641
in diabetic retinopathy, 625, 626, 628, 629, 631, 632
dystrophy, Sorsby’s, 705
flavimaculatus
(See also Stargardt’s disease)
advanced, 677
case studies, 676–681
diagnosis, differential, 676
electrophysiological findings in, 681
-likd diseases, 675–682
-likd diseases, differential diagnosis, 675–682
-likd diseases, splitting vs. lumping, 675–682
in Leber’s hereditary optic atrophy, 763
in night blindness, incomplete-type, 722
reflectometry, 264–267
in Stargardt’s disease, 670–671

G
Gain
of amplifiers, 185
calibration of, 194–195
Ganglion cell
fixing of (in cat), 82
on/off, action potentials from, 367
properties of, summary of (in cat), 83
types in retina (in monkey), 37
Ganzfeld dome, 372
electro-oculography in cone dystrophy, X-linked, 759
electoretinography in Bietti’s crystalline dystrophy, 688
in cone dystrophy, X-linked, 758
fields
relationship to b-wave amplitude reduction, 393
relationship to cone b-wave implicit time, 393
rod b-wave amplitude change in dark after, 394
stimulation, 214–215, 332
stimulator, 371–372
Gaussian noise, 247

Gender
difference in P100 peak latency, 420
in retinitis pigmentosa, 516
Genetic carriers: rapid off-response in, 344

Genetics
hereditary forms of cone dysfunction, 537
hereditary transmission of night blindness, incomplete-type, 724
inheritance in Leber’s hereditary optic atrophy, 763
pattern in retinitis pigmentosa, 516, 517
of Stargardt’s disease, 669
inherited drusen, 668
molecular, of gyrate atrophy, 655–656
Genotype: in albinism, 774
Geometric relationships in extended primary and secondary sources, 199
with point source, 198

Glaucoma
chronic open-angle, diagnosis, 767
electoretinography in pattern, 549–556, 766–772

Glial cell
K+ spatial buffer process in, 88
of retina, 38–39

Glioma: optic nerve, surgery of, flash VEP during, 609

Global field power, 268

Glutamate: depolarization of rod horizontal cell by pulses of, 81
l-Glutamate: conductance changes mediated by, 79–81

Gold foil lid-hook electrodes, 179
Goldmann perimetry in gyrate atrophy, 653
visual fields, for Bietti’s crystalline dystrophy, 685, 686, 687
Goldmann-Weekers dark adaptometry: in cone dystrophy, X-linked, 759

Grating(s), 465–466
acuity in infant, 408–409
tests, 462
sinusoidal, 466
stimuli, comparison with checkerboard stimuli, 409

Ground loop, 386
Gunshot wound: orbit in, 569

H
Halothane: electoretinography of children under, 378
Handicapped patients: visual acuity of multihandicapped patients, 463

Head injury, 570
Hemianopia
bitemporal, 558
Hemianopia (cont.)
 macular-sparing, homonymous, 560, 561
Hemisphere: responses to two spatial frequencies, 149
Hemorrhage: vitreous, effect on electoretinography, 379
Histograms
 log (bp/bs), 529–530
 of photopic ERG amplitudes, 290
History
 of electro-oculography, 14–16
 of electoretinography, 5–13
 of visual electrophysiology, 1–22
 of visual evoked cortical testing, 17–22
Hormones: and visual nervous system, 169–170
Hydroxychloroquine: causing retinal toxicity, 594–599
Hyperosmolarity responses, 163–166
Hypertension: ocular, pattern electoretinography in, 580, 766–772
Hyppopigmentation: in chloroquine toxicity, 595
Hysteria: electodiagnostic testing in, 573–577

I
I-ERG analysis, 7
Illuminance
 measurement problems, 200–202
 of red flickering test stimulus, 470
 retinal, 201
 of sinusoidally flickered test stimulus, 470
 units, conversion factors for, 199
Illumination background effcut on cone electoretinography, 392–394
 in electoretinography, 372
 results of, 392
Intraocular pressure: elevation, scotopic threshold response in, 360
Intraoperative monitoring: with visual evoked potentials and ERG, 607–610
Ion channels, Müller cell, 106–107
 movements across surface membrane of rod, 70
 recordings in electoretinography origins, 88–89
Iron chelators: and retina, 159
Ischemia: vascular, electoretinographic ratios in, 613–618
Ischemic optic neuropathy, 636–639
Isodensity maps of cone photoreceptor density, 49
J
Jansky-Bieh lowsky lipofuscinosis, 786–789
Juvenile (see Children)
K
K changes: source of, and b-wave generation, 105
K concentration: extracellular, light-evoked variations, 105
K conductance, 105–106 distribution over Müller cells, 106
K/Müller cell hypothesis (see Müller cell/K hypothesis)
K-Müller cell mechanism: for scotopic threshold response, 122–123
K spatial buffer process in glial cell, 88
buffering, 87–88
K variations: in b-wave generation, 104–105
Kernel analysis, 254–259
linear approximations of nonlinear system, 256
stimuli for, 256–258
first-order, 255–256
second-order, 255, 256
systems, 255–256
Kufs lipofuscinosis, 789
L
Lake-Cavanagh lipofuscinosis, 787–789
Lamp, xenon flash, 213
time course of light output from, 214
L-dopa: and visual nervous system, 168
Leber’s hereditary optic atrophy, 763–765
associated neurological findings, 764
color vision in, 763
diagnosis, differential, 764
electrophysiology, 764
electroretinography in, pattern, 764
fundus in, 763
inheritance, 763
in Japan, 764
pathogenesis, 764
retinal function in, 763–764
treatment, 764
visual acuity in, 763
visual evoked cortical potentials in, 764
visual fields in, 763–764
Lens (see Contact lens)
L-glutamate: conductance changes mediated by, 79–80
Light adaptation, 73–75
cone electoretinography growth during, 391–392
early receptor potential and, 318–319
in electoretinography, 375
adjustment, standard in ERG, 286
background calibration, standard in ERG, 286
background illumination, standard in ERG, 286
background intensity, standard in ERG, 286
calibration in electoretinography, 373–374
standard, 286
concentration in light-emitting diodes, 222
diffusion, standard in ERG, 285
Index

electrical changes produced by, 69–72
emitting diodes, 221–227
applications, 224
arrays, 224
connections of, series and parallel, 224
construction of, 222
feedback loop of current drive to enhance, 223
light concentration in, 222
relationship between current and light output, 223
measurement (see Photometry)
micrograph
fluorescence, of cone matrix sheath, 62
of fovea (in monkey), 57
of interplexiform cell in retina (in cat), 46
of midget bipolar cell, 33
of Müller cells in retina (in monkey), 38
of peanut agglutinin-binding molecules (in monkey), 58
of relationships in central retina (in monkey), 54
peak, 96–97, 546–547
in electro-oculography, 303–305
recalibration standard in ERG, 286
sensitivity of postsynaptic cells, 80–81
sources, standard in ERG, 285–286
stimulation in electroretinography, 371–376
stimulus adjustment, standard in ERG, 286
calibration in ERG, 286
duration in ERG, 285–286
strength, standard in ERG, 286
wavelength, standard in ERG, 286
Linear approximations of nonlinear system, 256
Linearity of amplifiers, 185
Lipofuscinosis
Jansky-Bielchowsky, 786–789
Kufs, 789
Lake-Cavanagh, 787–789
neuronal ceroid, 786–792
adult, 789
animal models, 790
atypical forms, 789
b-wave in, 790
clinical findings, 786–789
electrophysiology, 786–789
findings in heterozygotes, 789–790
infantile, 786
infantile, late, 786–787
juvenile, 788–789
juvenile, cataract in, 788
juvenile, early, 787–789
juvenile, early, electroretinography in, 788
juvenile, electron microscopy in, 789
prenatal diagnosis, 789–790
treatments, experimental, 790
types, tabular data, 787
ultrastructure in, 789
Santavuori-Haltia, 786
Stengel-Spielmeyer-Vogt, 788–789
Log (lp/ps)
histograms, 529–530
in retinitis pigmentosa, 528–530
Loop: ground, 386
Luminance, 201
along elements of checkerboard, 245
in ERG, pattern, 296–298
flash in albinism, 432
calibration with subjective photometer, 202
illuminance (see Illuminance)
measurement problems, 200–202
of square-wave flickering test probe, 471
units of, conversion table, 200
visual acuity as function of, 460
in visual acuity testing, 439–460
holes: focal ERG in, 337
normal, in night blindness, incomplete-type, 724
in retinitis pigmentosa, 523, 524
schisis vs. edema, fluorescein angiography in, 496–497
Maculopathy
angiography of, fluorescein, 672
foveal ERG in, 336
Magnetic fields: in environment, phosphene related, 364–365
Magnetically evoked retinal responses, 363–368
Magnetophosphorescence comparison with electrophosphorescence, 365–366
generation of, possible site of, 366–367
sensitivity maxima, 363–364
threshold values, 364, 365, 366
thresholds of, 363–364
Mains hum reduction and double-sided amplifiers, 386–387
interference entering recording situation, 385
test of, 385–386
Malingering: electrodiagnostic testing in, 573–577
Management of patient, 277–280
children, 279–280
infants, 279–280
Mapping topographical evoked potential component latency, 268
global field power, 268
potential map series, 273
potential profiles enhanced display of, 272
series of, 271
topographical potential profile construction, 270
Melanoma, malignant, 643–645
electro-oculography in, 644–645
Membrane potential rod, 77
transmitter release control by, 76–77
Memoir: personal, 3–4
Mesoridazine, 604
Microelectrodes, 8–9
Micrograph
electron (see Electron micrograph)
light (see Light micrograph)
Microscopy
electron, in neuronal ceroid lipofuscinosis, juvenile, 789
fluorescence, of retinal radial section (in dogfish), 79
Minimum-phase rule: in signal analysis, 234–235
Miosis: effect on electroretinography, 379
Model(s)
in lipofuscinosis, neuronal ceroid, animal, 790
mathematical, in electro-oculography, 305–306
Molecular genetics: of gyrate atrophy, 655–656
Monitoring equipment, 193–204
ERG (see Electroretinography, monitoring)
eye position with electro-oculography, 303
of intensive care unit with visual evoked potentials and ERG, 607–610
intraoperative, with visual evoked potentials and ERG, 607–610
for retinal toxicity, 596–598
Monoamines: retinal effects of, 156–157
Monochromatism: blue cone, 753–755
Monocular acuity measurement, 413
latency variation, mean, normal values, 438
Monosodium glutamate: and ERG intensity series, 357
Mucopolysaccharidoses V1, 63–64
Müller cell
cytology, 61
electroretinographic component, 92–93
electroretinography of, 103
function, 61
Müller cell (cont.)
intracellular responses, 103
ion channels, 106–107
K⁺ conductance
distribution over, 106
K⁺/K⁺ hypothesis
challenges of, 107–108
summary of, 107
membrane properties,
105–107
origin of b-wave (see
b-wave, Müller cell
origin of)
of retina (in monkey), 38
Multiple sclerosis, 797–805
color sense abnormality in,
807–808
electroretinography in,
pattern, 800
with optic nerve
demyelination, 552
paraplegia due to
progressive spastic,
799
P100 and, 807–808
PVEP in, abnormal,
incidence of, 798
visual acuity decrease in,
806–807
visual dysfunction in,
806–809
visual evoked cortical
potential in delayed, 806–809
pattern, 806–810
pattern, delayed, underlying
mechanism, 809
visual evoked potentials
in flash, 799
visual field defects in,
808–809
Muscle
artifacts, 388–389
biopsy in gyrate atrophy,
655
M-wave, 118–120
generation, summary of
events underlying, 116
N
Nerve(s)
connections in fovea, 44
optic (see Optic nerve)
organization of retina,
25–52
Nervous system
central, dysfunction,
761–813
visual
anesthetics and, 169
anticholinergics and, 169
antiepileptics and, 169
cholinergics and, 169
drugs of abuse and, 170
hormones and, 169–170
t-dopa and, 168
neuropsychiatric drug
effects on, 167–173
tranquilizers and, minor,
169
Neural (see Nerve)
Neuritis
of eye, 800
optic, 807
retrobulbar, 553, 554
Neuromodulators: in retina,
48
Neurons
intracellular responses
from, and oscillatory
potentials, 126–128
in rod pathways through
retina, 40
Neuronal ceroid
lipofuscinosis (see
Lipofuscinosis, neuronal
ceroid)
Neuropathy: optic, ischemic,
636–639
Neuropeptides: in retina, 48
Neuropharmacology:
experimental, of
retina, 153–157
Neuropit: of fovea, electron
micrograph of, 35
Neuropsychiatric drugs:
effects on visual
nervous system,
167–173
Neurotransmitters: in retina,
47–50, 83–84
Night blindness, 521
congenital stationary,
713–720
with abnormal fundi,
715–719
carrier state of, 711–712
congenital stationary,
incomplete-type,
721–725
angiography in,
fluorescein, 722, 724
clinical findings,
721–724
dark adaptation in
physiological, 721
diagnosis, differential,
724–725
electro-oculography in,
722
electroretinography in,
723
electroretinography in,
photopic, 722
electroretinography in,
scotopic, 722
electroretinography,
single-bright-flash, 722
fundus in, 722
hereditary transmission,
724
macula in, normal, 724
refractive error in,
721–722
visual acuity in, 721, 724
visual field in, 721
genital stationary, with
normal fundi, 713–715
genital stationary,
X-linked recessive, 711
dark adaptation curve in,
454
rod-cone interaction and,
suppressive, 471–472
Noise
analytic techniques and,
246–249
electronic sources, 184
Gaussian, 247
physiological, and visual
signals, 184
signal-noise ratio
improvement with
averaging, 249–250
Nonlinear system: linear
approximations of, 256
Nonphotic standing potential
responses, 163–166
NI*207 (see Thorizidine,
NI*207 and)
Nucleotide: cyclic
cascade, 72–73
retina and, 154–155
NVI, 614, 615
Nystagmus
with macula
degeneration, 679
in retinitis pigmentosa,
520–521
O
Ocular
(See also Eye)
hypertension, pattern
electroretinography in,
550, 766–772
media changes in
electroretinography,
379–381
pigmentation, effect of, in
electroretinography,
377–378
trauma, evaluation,
opaque media,
567–572
Off-response: rapid (see
Rapid off-response)
Oguchi’s disease, 715–717
dark adaptation curve, 716
Ophthalmoscope: hand-held,
dual-beam, maxwellian-view
stimulator, 373
Optic
atrophy
with disc telangiectasia,
499
of Leber (see Leber’s
hereditary optic
atrophy)
temporal, in cone
degeneration, 541
temporal, and retinitis
pigmentosa, 521–524
nerve
damage, 571
demyelination with
multiple sclerosis, 552
demyelination, pattern
electroretinography in,
551–552
diseases and early
receptor potential, 320
dysfunction, 761–813
dysfunction, pattern
electroretinography in,
550–553
function, pattern
electroretinography in,
549–556
glioma surgery, flash
VEP during, 609
pallor, 522
pallor after chloroquine,
595
response, and
beta-adrenergic
agents, 156
stimulation, retinal
potentials evoked by,
129
neuritis, 807
neuropathy, ischemic,
636–639
Optotype tests, 460–462
Orbit: in gunshot wound, 569
Ornithine: metabolism,
biochemical pathways
in, 655
Oscillations
fast, 546–547
slow, 546–547
Oscillatory potentials,
125–128
amplitude measurements,
327
calculated energy of, 324,
326
cells generating, 125–126
depth profile in retina (in
animals), 126
in diabetic retinopathy,
620–622
drugs affecting, 168
energy density spectrum, 323
ERG responses and, 288
intracellular responses from neurons and, 126–128
normal, 325–327
origin of, 125
recording, 322–327
adaptational conditions, 324–325
filtering technique, 322
with short time constant, 325
stimulus light, 322–324

P
Paraplegia, spastic progressive
electroretinography in, pattern, 800
multiple sclerosis causing, 799
Parkinsonism, 811–813
electroretinography in, 811–812
psychophysics in, 812
visual evoked potentials in, 811
Pattern
dystrophy (see Dystrophy, pattern)
electroretinography (see Electroretinography, pattern)
visual evoked potentials (see Visual evoked potentials, pattern)
Peanut agglutinin-binding molecules, 58
Pediatric (see Children)
Pedigree
in albinism, 777, 778
in blue cone monochromatism, 754
in X-linked retinoschisis, 750
Perimetry
Goldmann, in atrophy, gyrate, 653
rod and cone, 475–482
analyses, 475–482
computerized testing, 475–482
data processing steps, 477
instrumentation for, 476
Pharmacologic effects: in retinal electrophysiology, 151–162
Pharmacology
of retina (see Retina, pharmacology of)
of scotopic threshold response, 357–358
Phenothiazine
chemical structure, 601
retinal toxicity of, 600–606
Phenotype: in albinism, 774
Phosphene-related magnetic fields: in environment, 364–365
Phosphodiesterase inhibitors: and retina, 154–155
Phosphors: typical screen, for cathode ray tubes, 218
Photometry, 195–200
digital, for flash calibration, 202
measures and their relationships, 198
subjective, calibration of flash luminance with, 202
units, common, 197–200
Photopic/scotopic equivalence, 202–203
Photoreceptors, 28–31
cells
cytology, 59–61
development of, 55–57
function, 59–61
-pathologies, 64
density
cone, isodensity maps of, 49
cone and rod, 49
interphotoreceptor (see Interphotoreceptor mediation, 478, 480, 481
-retinal pigmented epithelium interface, 53–68
Phototransduction
cGMP cascade of, 74
in rods and cones, 69–75
Pigment
deposition in retinitis pigmentosa, 521
epithelium
diseases of, c-wave in, 545–546
responses, slow, in electroretinography, 328–329
epithelium, retinal cell cytology and function, 59
characteristics of responses, 164
in chloroquine toxicity, 595
composition, 57–63
development of, 56
diseases, 647–706
electroretinographic component, 93–95
embryological origins, 53–55
function, 57–63
morphology, 57–63
patologies, 63–64
with pattern dystrophy, 497
-photoreceptor interface, 53–68
relationships in central retina, light micrograph of (in monkey), 54
and visual system testing, 486–487
visual, regeneration in fundus albipunctatus, 733
Pigmentation
in dystrophy, pattern, 703
ocular, effect of, in electroretinography, 377–378
Pituitary syndromes, 783–785
diagnostic aspects, 783
electrophysiology in, 783–785
Plexiform layer
inner, 34–37
outer, 32–34
Pl relationship to electroretinography, 7
P100
latency in developmental delay, 583
multiple sclerosis and, 807–808
peak latency
and age, 420
gender differences in, 420
topographical distribution, 436
Postsynaptic cell
circuit of, equivalent, 81
light sensitivity of, 80–81
synaptic gain of, 80–81
responses, 77–79
Potential(s)
evoked (see Evoked potentials)
membrane (see Membrane potential)
nonphotic standing potential responses, 163–166
oscillatory (see Oscillatory potentials)
receptor (see Receptor potential)
retina (see Retina, potential)
Prader-Willi syndrome, 781
Preamplifiers, 183–185
Prematurity, 586, 587
Prenatal diagnosis: of neuronal ceroid lipofuscinosis, 789–790
Protan(s)
carriers, spectral sensitivity of rapid off-response in, 343
patients, early receptor potential in, 344–346
rapid off-response in, 339–344
Proximal negative response, 115–116, 119
generation, summary of events underlying, 116
Pseudo-Foster-Kennedy syndrome, 638
Psychiatric conditions: drugs for, 167–168
Psychophysical techniques relevant to electrophysiological testing, 445
test results in fundus albipunctatus, 732
testing, 443–482, 445–458
Psychophysics of drusen, dominant, 665–668
light-emitting diodes in (see Light-emitting diodes)
in parkinsonism, 812
PLH proximal, 99–100
relationship to electroretinography, 7
slow, electroretinographic component, 92–93
PLH relationship to electroretinography, 7
scotopic threshold response waveform interaction with, 355
Pupil area vs. contrast threshold, 422
diameters, 201
dilatation for ERG, 287
size
aging and, 423
in pattern electroretinography, 294
Pyridoxine-responsive gyrate atrophy, 650–651, 652

R

Radiation: visible, sources of, 212

RCS rat, 63

Receptor potential: late, 318

Reflectometry, fundus, 264–267 in fundus albipunctatus, 732–733

Refraction effect of, in electoretinography, 377 error in night blindness, incomplete-type, 721–722 linear regression of b-wave amplitude on, 378

Refsum’s disease: electoretinography in, 507

Retinal dystrophy, 701

Retina

nyctalopia in, 520–521
optic atrophy and, temporal, 521–524
patients and methods, 513–515
pigment deposition in, 521
rare treatable forms, 506–507
results, 515–524
retinal pigment epithelial, preserved
para-arteriolar, 497
scatterplots in, 519, 520
sector, 497
signs and symptoms, 501
simplex, Coats’s reaction in, 499
visual acuity in, 520
visual function change in, 505–506
X-linked, 504
recessive, female carriers, ERG
detection, 741–743
Retinitis punctata albescens:
atypical, 678
Retinoids: and retina, 158–159
Retinopathy
diabetic, 619–635
angiography in, 626, 628, 629, 632
b-wave in, scotopic, 622–623
case examples, 625–634
DRS-HRC, 621, 622
electro-oculography in 625
electroretinography in, 620–625
electroretinography in, progression prediction, 621–622
electroretinography in, protocol, 624–625
electroretinography in, severity, 620–621
electroretinography in, temporal aspects, 623
flicker implicit time in, 623
fundus in, 625, 626, 628, 629, 631, 632
high-risk characteristics, 622
oscillatory potentials in, 620–622
VEGPs in, 625
thioridazine (see
Thioridazine retinopathy)
Retinoschisis
reticular peripheral, 727
X-linked, carrier state
detection, 748–752
method, 748–750
results, 750–751
X-linked juvenile, 496, 726–729
dark adaptation in, 728
electroretinography in, 728
macula in, 727
X-linked, pedigrees, 750
X-linked, rod-cone
interconnections in, 750
Retrobulbar neuritis, 553, 554
Retrochiasmal lesions, 560–562
bilateral dysfunction, 562
unilateral dysfunction, 560–562
Rhodopsin: in vitamin A
deficiency, 739
Riggs contact lens electrode, 10
Ring scotoma, 518
Rod(s)
-cone degenerations in retinitis
pigmentosa, 510–527
dystrophy, 512
dystrophy, atypical, 679
dystrophy, progressive, variation, 678
interaction in normal subjects, 749
interaction in
retinoschisis, X-linked
carriers, 750
-cone interaction,
suppressive, 469–474
background, 469–470
clinical perspective, 470–471
color vision disorders
and, 472
newer developments, 472–473
night blindness and, 471–472
X-linked inherited
conditions and, 472
-cone sensitivity loss maps, 480, 481
electroretinography, dark
adaptation of, 394–395
membrane potential, 77
pathway in starlight and
scotopic threshold
response, 358
perimetry (see Perimetry,
rod and cone)
of retina
cells, horizontal, depolarization by
glutamate, 81
cells, responses of, 78
circulating current
reduction through,
produced by light
flashes (in monkey), 71
degeneration,
progressive, 64
desensitization of (in
monkey), 75
electron micrograph of
(in monkey), 29
functional interconnections of,
75–76
ion movements across
surface membrane of
70
pathways, neurons in,
40
photocurrent
fluctuations of, 73
photoreceptor density, 49
photoresponse spectral
sensitivity of (in
monkey), 72
phototransduction in,
69–75
rod-cone coupling, 76
rod-rod coupling, 75–76
signals, circuitry through, 39–41
synaptic terminal,
calcium concentration at, 77
vs. cone b-wave, 109
spectral sensitivity
functions, 476
S
Santavuori-Haltia
lipofuscinosis, 786
Scattergrams: for scotopic
responses, 377
Scatterplots: in retinitis
pigmentosa, 519, 520
Schisis: macular, vs. edema,
fluorescein angiography in,
496–497
Sclerosis (see Multiple
sclerosis)
S-cone syndrome, 680
Scotoma
with cone degeneration
and familial drusen, 680
ring, 518
Scotopic b-wave: in diabetic
retinopathy, 622–623
Scotopic/photopic
equivalence, 202–203
Scotopic responses:
scattergrams for, 377
Scotopic threshold response,
121–124
characteristics of, 353–355
clinical applications, 360
comparison between
species, 355–356
contribution to ERG, 122
dominating intraretinal
recordings, 122
of electroretinography, 352–362
histo, 352–353
intraretinal recordings (in
cat), 356
K+–Müller cell mechanism
for, 122–123
latency decreasing, 354
pharmacology of,
357–358
physiology, 358–359
quantal sensitivity of, 358
recording tips for clinical
patients, 359–360
retinal gain in, 358–359
retinal origins of, 358–357
rod pathway in starlight, 358
as separate response,
121–122
depth distribution, 121–122
intensity, 122
in vision loss and
intraocular pressure
elevation, 360
V-log I curve of, 353
waveform interaction with
PLI, 355
Scotopic vision: lacking
spatial sensitivity, 359
Senile dementia: of
Alzheimer’s type, pattern
electroretinography in, 795
Sex: effect of, in
electroretinography, 377
Signal analysis, 232–237
delay, 234–235
distortion, 235–237
frequencies, two
harmonically related, 234
frequency dependence,
232–234
latency, 234–235
linearity, 232
minimum-phase rule,
234–235
phase shifts, 234
square wave pattern, 236
Signal-noise ratio:
 improvement with averaging, 149–150
Silent substitution, 202–203
Sine wave, 233
Sinusoidal grating, 466
Sinusoidally flickered test stimulus; illuminance of, 470
Skin electrodes, 180
Small signals; averaging, 389–390
Sorsby's fundus dystrophy, 705
diagnosis, differential, 706
electrophysiology of, 706
histology, 706
pathogenesis, 706
Spastic paraplegia (see Paraplegia, spastic)
Spatial contrast, 467
sensitivity, 468
Special-purpose data acquisition systems, 188–192
characteristics of, general, 189–191
questions about, 191–192
Spreading depression, 130
Square wave, 238, 240
flickering test probe; luminance of, 471
infinite, line spectrum of, 242
pattern, 236
Stargardt's disease, 669–674
(see also Fundus flavimaculatus)
age of onset, 669–670
angiography of, fluorescein, 670, 671–672
dark choroid effect in, 498
diagnosis, differential, 674
fundus in, 670–671
history, 669
inheritance of, 669
pathogenesis, 673
pathology, 673
prognosis, 673–674
visual acuity in, 670
visual function in, 672–673
Stengel-Spielmeyer-Vogt lipofuscinosis, 788–789
Stereois: in infant, 410
Sternomastoid tremor, 406
Stimulation
Ganzfeld, 214–215, 332
local, for electroretinography, 215
pattern-onset, and delousing, 439
Stimulator(s)
 for electrophysiology, 224–226
electroretinography, 224–226
visual evoked response, 224
flash, voltage drive circuit for, 223
Ganzfeld, 371–372
maxwellian-view ophthalmoscope, 373
Stimulus color (see Color stimuli) devices, 211–220
/response function, 261
Sweep (see Visual evoked potential, sweep)
Synapse: first, signal shaping at, 76–81
Synaptic gain of postsynaptic cells, 80–81
postsynaptic (see Postsynaptic)
terminal of rod, calcium concentration at, 77
Synchronous amplification, 250–252
T
Telangiectasia: disc, with optic atrophy, 499
Telodendria: of cone pedicles, gap junction between two, 31
Temporal contrast, 466–467
Temporal frequency characteristics: and aging, 420
Ten-twenty designated positions, plan view of, 402
designations of electrode position, 402–406
method of measurement, 400–401
system circumference location of, 401
lateral locations of, 401
Testing: clinical, principles, 483–489
Theory: duplicity, 448–449
Thioridazine
NP207 and, 600–604
clinical findings, 600–601
physiological testing, 602–603
retinopathy, 600–606
adaptometry in, dark, 604
early, 601
ERG in, 603
late, 602
stable vs. progressive, 601–602
toxicity mechanism, 603–604
visual field changes in, 604
Thorazine, 605
Threshold absolute, 445
determination methods, 445–448
critique of, 445–448
visual channels and, 448
difference, 445–446
scotopic (see Scotopic threshold)
term, discussion of, 445
Topographical evoked potential mapping (see Mapping, topographical evoked potential)
Toxicity
cornal, 594
drug, pathogenesis, 598
retinal, 565–610
chloroquine causing, 594–599
functional problems, 565–610
hydroxychloroquine causing, 594–599
monitoring for, 596–598
phenothiazine, 600–606
practical problems, 565–610
risk of, 596
thioridazine (see Thioridazine, retinopathy)
Tranquilizers: minor, and visual nervous system, 169
Transmitter release: control by membrane potential, 76–77
Trauma: ocular, evaluation, opaque media, 567–572
Tremor: sternomastoid, 406
Tubes
cathode ray, 218
display (see Display tubes)
Tumors:
electrophysiological evaluation, 611–645
U
Ultrastructure
in Bietti's crystalline dystrophy, 689, 690
in lipofuscinosis, neuronal ceroid, 789
Usher syndrome: type I, fluorescein angiography in, 496

V
Vein, retinal (see Retina, vein)
VEP (see Visual evoked potential)
Vermacuity: in infant, 409–410
Vessels
disease, electrophysiological evaluation, 611–645
retinal (see Retina, vessels)
Vinca alkaloids: and retina, 159–160
Vision
color (see Color vision)
loss
nonorganic, PVEP and PERG in, 574
scotopic threshold response in, 360
scotopic, lacking spatial sensitivity, 359
Visual acuity (see also Acuity)
charts according to international recommendation, 461
decline in multiple sclerosis, 806–807
development, and sweep VEP, 411
estimation in infants (see Infant, visual acuity estimation in)
as function of luminance, 460
in Leber's hereditary optic atrophy, 763
low-contrast, 462
low-contrast tests, practical value of, 462–463
in multihandicapped patients, 463
in night blindness, incomplete-type, 721, 724
in retinitis pigmentosa, 520
in Sorsby's fundus dystrophy, 705
of Stargardt's disease, 670
testing, luminance in, 459–460
testing principles, 459–464
tests, 460–462
tests, optotype, 460–462
tests, standardization of situations, 463
angles, calculation of, 203
channels and threshold determination methods, 448
delayed maturation (see Developmental delay)
development control by visual experience, 412–413
results in, recent, 412–414
dysfunction in multiple sclerosis, 806–809
electrophysiology (see Electrophysiology)
evoked potential(s) amplitude of, 233
cortical (see below)
drugs decreasing amplitude, 168
drugs increasing amplitude, 168
flash, cutoffs and, 188
flash, in multiple sclerosis, 799
flash, during optic nerve glioma surgery, 609
latency in infant, 410–411
monitoring with, intraoperative and intensive care unit, 607–610
in normal adult, 133
occipital, to sinusoidally modulated light, 236
in parkinsonism, 811
pattern, in multiple sclerosis, 798
pattern reversal, 136–141
pattern reversal, normal, 140
pattern reversal, waveforms, 136–141
phase characteristics of, 233
relation to acuity, 136
source derivations of stimulation and, 137
steady-state, in infant, 411
stylized, to flash stimulation in adults, illustration, 18
during surgery, 608
sweep contrast sensitivity, 414
sweep technique in infant, 411–412
topography in albinism, 430
transient, in infant, 410
evoked potentials, cortical, 397–441
age changes in, 417–420
aging and, 417–424
in albinism (see Albinism)
basic recording, 399–407
in blindness, cortical (see Blindness, cortical, visual evoked cortical potentials in)
with chromatic stimuli, 147–150
with chromatic stimuli, clinical data, 148
color, to appearance, 147–148
color, to reversal and motion, 148
in developmental delay, 581–584
in diabetic retinopathy, 625
electrodes for, 399
electrodes, placement, 399–406
flash, in developmental delay, 585–588
in Leber’s hereditary optic atrophy, 764
in multiple sclerosis (see Multiple sclerosis, visual evoked cortical potential in)
origin of components, 132–144
pattern-reversal, 419
pattern-reversal responses, 418
recording, artifact recognition, 438–439
recording, diurnal patterns, 438
recording, interest variability, 438
recording, normative studies, 437–438
recording, patient compliance, 439–440
recording, stimulus conditions, 435–437
recording, technical issues in, 435–441
recording, history of, 17–22
for visual acuity estimation in infants (see Infant, visual acuity estimation in, by visual evoked cortical potentials)
evoked response electrodes, 181
flash, 132–136
flash, distribution of P1 and P2 components, 135
flash, scalp localization, 133–136
flash, waveform, 132–133
stimulators for, 224
experience, visual development control by, 412–413
field(s) changes in thiordazine retinopathy, 604
defects in multiple sclerosis, 808–809
in Leber’s hereditary optic atrophy, 763–764
in night blindness, incomplete-type, 721
function change in retinitis pigmentosa, 505–506
in Stargardt’s disease, 672–673
tests, 487
tests, diseases where tests are informative, 487
tests, information obtained, 487
loss (see Vision loss)
nervous system (see Nervous system, visual)
performance contrast sensitivity in, 413–414
tasks, 408–410
tasks, uses of, 408–410
signals and physiological noise, 184
system, testing levels of, 485
testing in infant (see Infant, visual acuity estimation in)
Vitamin A deficiency, 737–740
adaptometry in, two-color dark, 739
electroretinography in, 738
fundus photographic, 738
rhodopsin in, 739
Vitreous hemorrhage, effect on electroretinography, 379
humor, electrode in (in cat), 139
substitute, effect on electroretinography, 379–380
V-log intensity curves, of b-wave amplitudes, 154
Voltage calibration, 382

W
Waveform aging and, changes, 417
electroretinographic (see Electroretinography, waveform)
White-dot syndromes, 640–642
“multiple evanescent,” 641

X
Xenon flash lamp, 213
time course of light output, 214
sources for stimulation, 211–214
X-linked choroideremia carrier state evaluation, 744–747
inherited conditions and suppressive rod-cone interaction, 472
recessive cone dystrophy (see Cone dystrophy, X-linked recessive)
congenital stationary night blindness, 711
pedigree in choroideremia, 495
retinitis pigmentosa, female carriers, ERG detection, 741–743
retinitis pigmentosa, 504
retinoschisis (see Retinoschisis, X-linked)