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The Photoreceptor—Retinal Pigmented

Epithelium Interface

Gregory S. Hageman
Lincoln V. Johnson

This chapter deals with the interface between the
photosensitive outer segments of photoreceptor cells
and the retinal pigmented epithelium (RPE). At this
interface, photoreceptor cells and cells of the RPE,
both highly polarized, abut one another. The photo-
receptor cells are responsible for converting light
into electrical impulses through the process of trans-
duction, a subject beyond the scope of this chapter;
however, there are a number of excellent reviews
that provide detailed descriptions of the process (see
Chapter 7).>% "% 11¢ Photoreceptor cell outer seg-
ments, which contain the photosensitive visual pig-
ments, are continually renewed through the addi-
tion of new membrane basally and concomitant
shedding of old membrane from their apical tips.
Shed outer segment membrane is ingested by the
simple, cuboidal RPE cells, which are located di-
rectly adjacent to the photoreceptors and separate
them from the choroidal vasculature. Interspersed
between these two retinal layers is the interphotore-
ceptor matrix, a unique extracellular matrix that fills
the “subretinal” space (Figs 6—1 and 6-3). The ma-
trix is composed of molecules that appear to play a
role in mediating biochemical and physical interac-
tions among the retina, RPE, and choroidal vascula-
ture. Thus the photoreceptor-RPE interface is an
area of crucial importance to proper retinal function.

EMBRYOLOGICAL ORIGINS OF THE
RETINA, RETINAL PIGMENTED
EPITHELIUM, AND
INTERPHOTORECEPTOR MATRIX

This section focuses primarily on human reti-
nal development; references to other spec-
ies are included where appropriate. A number
of excellent reviews contain additional de-
tajl, 14 24, 39, 65, 66,79, 92,106, 124, 127, 147 [+ chould be
noted that developmental stages of the human em-
bryo have been defined on the basis of a variety of
parameters including gestational time, crown-rump
length, or heel length, and discrepancies in the time
course of development are common in the literature.
These discrepancies are complicated further by the
fact that (1) the retina differentiates along a central-
to-peripheral gradient, with an approximate 6-week
lag,”! (2) regional variations exist (e.g., the fovea),
and (3) in some cases it is difficult to determine from
which region of the developing retina published
data have been derived.

Development of the Retina

The optic primordium and optic sulcus are evi-
dent within the neural fold of the diencephalon at

53
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FIG 6-1.

Light micrograph of a section of central retina from a monkey eye depicts the relationship between the choroid (C), retinal
pigmented epithelium (RPE), interphotoreceptor matrix (asterisks), and neural retina. The neural retina is composed of a de-
fined number of cell types arranged in a precise lamellar configuration. The apical surface of the neural retina contains highly
polarized photoreceptor cells that abut the apical surface of the retinal pigmented epithelium. Interspersed between the apicies
of these two retinal layers is the interphotoreceptor matrix (asterisks), a unique extracellular matrix that fills the subretinal
space. Two types of photoreceptor cells can be identified morphologically. Cone photoreceptor inner segments (Ci) are large
in diameter, and the outer segments (arrows) are broader basally and tapered toward their apical tips. In contrast, rod photo-
receptor inner (R!) and outer (arrowheads) segments retain a relatively uniform diameter that is smaller than that of cone
photoreceptors, (OLM = outer limiting membrane; ONL = outer nuclear layer (contains photoreceptor cell nuclei); OSL =
outer synaptic layer; INL = inner nuclear layer [contains nuclei from Miiller, amacrine, bipolar, and horizontal cells}; ISL =
inner synaptic layer; GC = ganglion cell; NFL = nerve fiber layer; ILM = inner limiting membrane).
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about 22 days of gestation. The retina develops sub-
sequently as an evagination from this region at ap-
proximately 25 days (2.6 mm) of gestation. This out-
pocketing enlarges to form the primary optic vesicle,
which remains attached to the diencephalon by the
optic stalk. At this stage, the cavity of the optic ves-
icle (future subretinal space) remains in communica-
tion with the ventricle of the brain through the optic
stalk. The neural epithelium of the optic vesicle is a
columnar epithelium containing an abundance of
mitotically active cells.

During the fourth week of gestation (4.5 mm), the
optic vesicle invaginates upon itself, and this results
in the formation of the optic cup, a structure consist-
ing of two neuroectodermally derived epithelial cell
layers with their ventricular surfaces directly ap-
posed. The cavity of the optic vesicle is all but oblit-
erated during this time and remains only as a poten-
tial space, termed the subretinal or interphotoreceptor
space. Although the molecular events that lead to in-
vagination are not fully understood, recent evidence
suggests that calcium® and extracellular matrix com-
ponents'*® may be involved.

Although both layers of the retina differentiate
from a continuous neural epithelium, their subse-
quent differentiation at both the cellular and molec-
ular levels is quite diverse. The outermost layer of
this neuroepithelium remains a single cellular layer
and becomes the RPE. The innermost layer, the pre-
sumptive neural retina, thickens rapidly and be-
comes stratified; by 4 weeks (4 to 4.5 mm) of gesta-
tion, the neural retina is approximately 0.1 mm thick
and consists of eight to nine distinct rows of cells.
Both epithelial layers extend peripherally to form the
ciliary body epithelium and posterior aspect of the
iris. During the invagination process, the choroidal
fissure, through which blood vessels pass into the
interior of the eye, is formed along the ventral por-
tion of the optic stalk.

During cellular differentiation of the neural retina,
undifferentiated neuroblasts, which make up the en-
tire thickness of the retina from the ventricular to
the vitreal surfaces, typically lose their attachment to
the vitreal surface and migrate to the ventricular sur-
face where mitosis occurs. Following cell division,
daughter cells migrate toward the vitreal surface and
ultimately reestablish connections with it. This pro-
cess is repeated at each round of cell division, even-
tually resulting in the differentiation of a stratified
neural epithelium. The glial or Miiller cells can be
distinguished at 4 weeks of gestation. By 5 weeks of
gestation (5 to 7 mm) the nerve fiber layer is visible

in the central retina (although this layer is lacking in
the macula, even at birth*®), as are ganglion cells.’"*
The layer of Chievitz, a transient fiber layer that sep-
arates the retinoblast layer into two nucleated layers,
also forms during the fifth week of gestation.”> %

By 7 to 8 weeks (20 to 23 mm) the inner neuro-
blast layer separates into two layers of nuclei that
consist of potential ganglion cells (inner layer) and
amacrine and Miller cells (outer layer). The gan-
glion cells give rise to nerve fibers that course to-
ward the future optic nerve and form the nerve fiber
layer. The inner limiting membrane also is clearly
evident by this stage. During the ninth and tenth
weeks of gestation (40 to 50 mm), photoreceptor,
horizontal, and bipolar cells begin to differentiate
within the outer neuroblast layer.> ¢ !** Horizontal
and bipolar cells migrate into the layer of Chievitz
and become separated from photoreceptor cells by
the outer plexiform layer.®® Amacrine and Miiller
cell bodies intermingle with those of horizontal and
bipolar cells, and the transient layer of Chievitz is
thereby obliterated; however, it persists in the mac-
ular region until birth. At this same time extensive
junctional complexes, including gap junctions, mac-
ula adherens, zonula adherens, and zonula occlu-
dens, can be observed between cells of the neural
retina and pigmented epithelium.>” ® Between 12
and 15 weeks of gestation, cellular proliferation in
the outer neuroblast layer ceases'” except in the
macular region.'™ The development of the macular
region slows and begins to lag behind the develop-
ment of the extramacular regions at this time. By 7
months of gestation, all layers except the macular re-
gion, which is not completely developed until 16
weeks postpartum, have assumed adult arrange-
ment and proportion.

DEVELOPMENT OF PHOTORECEPTOR
CELLS

Photoreceptor cells are probably specified within
the outer layers of the neural retina as early as 10
gestational weeks (40 to 50 mm),"* but they are dif-
ficult to identify. By 12 weeks (83 mm) of gestation,
however, cone photoreceptors are easily identified
by their relatively large, slightly oval configuration,
lightly stained or electron lucent cytoplasm, large
juxtanuclear accumulation of smooth endoplasmic
reticulum, and a single cilium.®® Rod photorecep-
tors, which have distinct, dense nuclei, can be iden-
tified conclusively by 15 weeks (120 mm) of gesta-
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tion.*® At 18 weeks (156 mm) of gestation, a single
layer of large, pale-staining cone photoreceptor cell
bodies is visible in the outermost portion of the neu-
ral retina. The smaller rod photoreceptors comprise
the remainder of the outer nuclear layer. Some syn-
apses are established by cone photoreceptor pedicles
by 12 weeks of gestation; however, synapses are not
observed in association with rod photoreceptor cells
until approximately 18 weeks of gestation. By 24
weeks, both types of photoreceptor cells are well po-
larized and have distinct inner segments that extend
approximately 2 pm beyond the outer limiting mem-
brane.”! Rudimentary cone outer segments, which
begin to develop at 16 weeks, are numerous and
filled with whorls of tubular structures at this
stage.”! The majority of cone but not rod photore-
ceptor cell outer segments have stacks of disc mem-
branes by 24 weeks of gestation. In contrast, rod
photoreceptor cells contain a mixture of uniform and
randomly oriented discs even at 28 weeks”' and do
not resemble adult outer segments until approxi-
mately 36 weeks.'*

Development of the Fovea

Although it has been recognized for some years
that development of the human fovea lags behind
that of the central retina, recent studies have pro-
vided detailed information regarding its develop-
ment.> 1% The fovea can be identified at approxi-
mately 22 weeks of gestation by the existence of a
photoreceptor layer that contains only cones and by
the presence of an unusually thick layer of ganglion
cells. Following birth, the fovea continues to de-
velop, a process that is characterized by deepening
of the foveal depression, narrowing of the rod-free
zone (foveola), and maturation and elongation of fo-
veolar cone photoreceptor cells, including the differ-
entiation of outer segments and development of
basal axosomal processes that constitute Henle's fi-
ber layer. The fovea is not fully differentiated until
the third or fourth postnatal year (Fig 6-2).

Development of the Retinal Pigmented Epithelium

At 5 to 6 weeks (15 to 20 mm) of gestation the pre-
sumptive retinal pigmented epithelium exists as a
pseudostratified layer of columnar epithelial cells
that have a dense cytoplasm, oval nuclei, and the
first detectable pigment granules.®® Mitoses are nu-
merous and are located primarily in the farthest ven-
tricular portion of this epithelium. By 7 weeks (20

mm) of gestation, basal and lateral infoldings of RPE
cell plasma membrane and apical microvilli can be
observed.'® In addition, distinct “terminal bars”
consisting of zonula occludens and zonula adherens,
are evident.'® By 8 weeks (27 to 31 mm) of gestation
the RPE is established as a simple cuboidal epithe-
fium. A close apposition between RPE and neural
retinal cells is attained following invagination of the
optic vesicle. Intercellular junctions, including both
gap junctions and zonula adherens junctions, are
present between these two cell layers at this time.™

Development of the Interphotoreceptor Space

The interphotoreceptor space is the extracellular
matrix-filled remnant of the central cavity of the em-
bryonic optic vesicle. It is within this interphotore-
ceptor space that important interactions between
RPE cells and photoreceptor cells of the neural retina
take place. Little information exists in humans per-
taining to the development of the interphotoreceptor
space or its contents, collectively referred to as the
interphotoreceptor matrix. A.T. Johnson and co-
workers,”! however, have demonstrated that inter-
stitial retinol-binding protein, a major component of
the adult interphotoreceptor matrix, is first detect-
able in human retinas at approximately 20 weeks of
gestation, a time that corresponds to photoreceptor
cell outer segment differentiation. Between 15 and
18 weeks of gestation, intercellular junctions that
form between RPE and neural retinal cells earlier in
development gradually disappear, and an obvious
interphotoreceptor space filled with a detectable
flocculent material is visible at the tips of photore-
ceptor cell inner segments. By 24 weeks, the inter-
photoreceptor space widens, and distinct domains
of flocculent interphotoreceptor matrix that are
termed cone matrix sheaths are selectively associated
with cone photoreceptor cell inner and outer seg-
ments. Chondroitin 6-sulfate, a major component of
cone matrix sheaths, is first present between 17
and 18 weeks of gestation and is solely associated
with cone outer segments. Peanut agglutinin (PNA)-
binding glycoconjugates, additional major structural
components of cone matrix sheaths,> > 727> are
present within the interphotoreceptor space at the
time of its earliest formation. By 17 to 18 weeks of
gestation, interphotoreceptor matrix—containing,
peanut agglutinin—binding constituents, are visible
as concentrated accumulations that are primarily as-
sociated with cone photoreceptor cells. It should be
pointed out that the expression of these two major
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FIG 6-2.

Light micrograph of a section of a fovea of a monkey retina. In contrast to other regions of the neural retina, inner and outer
segments of foveal cones are of a narrower diameter and appear more rodlike (compared with cones in Fig 6—1). In the cen-
tral fovea, only cone photoreceptor cell bodies are present within the outer nuclear layer (ONL). Henle's layer (H) consists of
cone photoreceptor cell axons (OLM = outer limiting membrane; INL = inner nuclear layer; GCL = ganglion cell layer; ILM =

inner limiting membrane).

cone matrix sheath-associated constituents occurs at
the time when rudimentary, outer segments first dif-
ferentiate, approximately 10 weeks prior to the ap-
pearance of definitive photoreceptor disc mem-
branes. Possibly cone matrix sheath-—associated
constituents may be necessary for the subsequent
differentiation and survival of photoreceptor cell
outer segments.

RETINA-RETINAL PIGMENTED
EPITHELIUM-INTERPHOTORECEPTOR
MATRIX: MORPHOLOGY, COMPOSITION,
AND FUNCTION

As detailed above (see the previous section) the
neural retina develops as a stratified epithelium, one
basal surface bordering the vitreous cavity and the
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other apical surface in close association with the
RPE. The cellular composition and organization of a
mature retina is described in Chapter 5. Of most in-
terest to this chapter is the scleral surface of the neu-
ral retina (Figs 6—1 to 6-3). Microvillous extensions
of Miiller cells form junctional complexes with adja-
cent photoreceptor inner segments to seal the inter-
photoreceptor space lying between the neural retina
and the RPE. The interphotoreceptor space is filled

by a specialized extracellular matrix termed the in-
terphotoreceptor matrix (Figs 6—1 and 6-3). The api-
cal surfaces of retinal pigmented epithelial cells con-
tain numerous microvilli and are specialized for the
phagocytosis of shed packets of photoreceptor outer
segment membranes, one of a number of RPE cell
activities that contribute to photoreceptor cell func-
tion.

FIG 6-3.

Light micrograph of a region of the section depicted in Figure 6—1 (A) and a fluorescence light micrograph (B) of a section of
monkey retina that shows the distribution of peanut agglutinin—binding molecules in monkey retina. Peanut agglutinin—binding
molecules in monkey and human retinas are specifically localized to domains of cone photoreceptor cell-associated interpho-
toreceptor matrix that have been termed cone matrix sheaths (asterisks). Chondroitin 6-sulfate containing proteoglycan and
peanut agglutinin—binding glycoconjugates are major constituents of cone matrix sheaths (C = cone photoreceptor cell; R =
rod photoreceptor cell; arrow, cone outer segment; arrowhead, rod outer segment; RPE = retinal pigmented epithelium; OLM
= outer limiting membrane; ONL = outer nuclear layer; OSL = outer synaptic layer; INL = inner nuclear layer).
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RPE Cell Cytology and Function

The RPE has roles important to the maintenance
of retinal, especially photoreceptor, cell function and
homeostasis.?

The polygonal cells of the RPE form a simple (one
cell layer thick) cuboidal epithelium with their basal
surfaces attached to a basement membrane, which is
part of a collagen-rich layer of extracellular matrix
known as Bruch’s membrane. Bruch’s membrane
separates the retinal pigmented epithelium from its
primary vascular supply, the choroidal capillaries,
which are the major source of nutrients for the outer
retina; numerous basal infoldings of retinal pig-
mented epithelial cell plasma membranes facilitate
nutrient and waste product exchange. The best char-
acterized of the transport functions is retinol, which
complexes with opsin in photoreceptor cell outer
segments and is absolutely necessary in the process
of phototransduction. The RPE mediates the trans-
port of retinol from the choroidal vasculature to the
interphotoreceptor space by utiliziné a number of
retinoid-binding proteins as carriers.'” '®

Laterally, RPE cell membranes are joined by inter-
mediate (adhering) junctions, and between adjacent
cells continuous bands of tight junctions prevent
paracellular flow of large molecules to and from the
subretinal space, thus contributing to the blood-reti-
nal barrier (tightly sealed retinal vasculature also
contributes significantly to this barrier).

Apically, RPE cells have numerous microvilli that
project into the interphotoreceptor space and are
closely associated with photoreceptor cell outer seg-
ments. This association facilitates another major
function of the RPE cells, the phagocytosis and di-
gestion of shed photoreceptor outer segment mem-
brane produced by ongoing renewal of photorecep-
tor outer segments; phagosomes involved in the
degradation of phagocytosed membrane are typical
components of RPE cytoplasm. The dynamic rela-
tionship that exists between the RPE and photore-
ceptors during outer segment membrane turnover is
well established.?® The molecular mechanisms that
regulate shedding and subsequent phagocytosis by
the RPE have not been elucidated, although a recep-
tor-mediated process involving both photoreceptors
and retinal pigmented epithelium has been hypothe-
sized.'® Studies by McLaughlin and coworkers”~%
have demonstrated a loss of certain lectin receptors
in shed, unphagocytosed disc packets in the Royal
College of Surgeons (RCS) rat (an animal that has a
defect in the ability of the RPE to ingest shed disc),
and this suggests that phagocytosis may involve a

cell surface signal from the photoreceptor to the
RPE. In other studies, RPE and outer segment
membrane—associated molecules have been identi-
fied and are being characterized as potential partici-
pants in receptor-mediated recognition and/or
phagocytosis. The sequence of morphological events
that occurs during shedding and ingestion of outer
segments has been thoroughly investigated in mon-
key and human retinas by transmission electron mi-
croscopy.® 129 13% 131 Cone photoreceptors are also
known to shed their discs in a diurnal rhythm, the
majority shedding their membranes at night, al-
though species variations have been reported.

The apical surface membranes of RPE cells are
also rich in Na*-K* adenosine triphosphatase
(ATPase) molecules that mediate ion fluxes and in-
fluence the transport of other molecules into and out
of the subretinal space.'” Abundant cytoplasmic
pigment (melanin) granules are also present in reti-
nal pigmented epithelial cells; these are also impor-
tant to retinal function and serve to absorb scattered
light.

Additionally, RPE cells are known to synthesize
and secrete a number of proteins, glycoproteins, and
proteoglycans that are part of the interphotoreceptor
matrix.* > ' #1131 The extent to which any of these
interphotoreceptor matrix components are impor-
tant to structural or functional interactions between
retinal photoreceptors and the RPE is largely un-
known. However, several recent studies suggest
that as yet undefined factors secreted by RPE cells
may be important in influencing retinal differentia-
tion.”" %% 137 Additionally, it has been suggested
that proteoglycans in the interphotoreceptor matrix,
at least some of which are likely to be products of
the RPE, may be important in retina—RPE adhe-
sion.?® %8

Photoreceptor Cell Cytology and Function

The highly polarized photoreceptor cells form the
outermost layer of the neural retina (see Fig 6-3,A).
Their cell bodies form the outer nuclear layer; their
axonal processes extend basally to synapse with bi-
polar and horizontal cells in the outer synaptic layer
(see Chapter 5). The scleral portions of photorecep-
tor cells, or outer segments (see Fig 6-3,A), are
modified ciliary structures formed by elaborations of
plasma membrane containing high concentrations of
photosensitive, integral membrane molecules. The
most abundant protein of rod outer segment disc
membranes is the rod photopigment rhodopsin, a
glycoprotein with a molecular weight of approxi-
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mately 42 kilodaltons (kD) that is present with a
packing density of approximately 30,000 molecules
per pm?. The carboxy terminus of rhodopsin is lo-
cated in the interdiscal space, whereas the amino
terminus projects into the intradiscal space. Another
recently discovered outer segment membrane glyco-
protein is the “rim” protein,'*! which has a molecu-
lar weight of 240 to 290 kD and is located along the
edges of outer segment discs and incisures. Other
proteins that have been identified in association
with outer segment membranes include peripherin
(33-kD dimer), glyceraldehyde-3-P-dehydrogenase
(38 kD), a cyclic guanosine monophosphate gated
channel protein (63 kD), and a spectrinlike protein
(240 kD) (Molday, unpublished observations). Other
molecular constituents located within photoreceptor
outer segments participate in phototransduction (see
Chapter 7). The adjacent inner segments, which
contain mitochondria and the metabolic synthetic
machinery responsible for the biosynthesis and
transport of molecules for both the outer segment
and axonal portions of the cell, extend into the inter-
photoreceptor space and are surrounded by the in-
terphotoreceptor matrix. The photoreceptor inner
segment membranes form junctional complexes with
the surrounding glial elements of the retina, the
Miiller cells. These junctional complexes establish
what has been termed the outer limiting membrane
(see Fig 6-1), a region thought to act as a molecular
sieve?® to partially seal the interphotoreceptor space
from the neural retina.

Two types of photoreceptor cells, rods and cones,
can be identified cytologically (see Figs 6-1 and
6-3,A) (see Chapter 5). Subclasses of cone photore-
ceptors have been identified, each possessing differ-
ent spectral sensitivities, and corresponding differ-
ences in the molecular nature of the photosensitive
pigments concentrated in their outer segments.'*
The outer segments of rods and cones differ struc-
turally; rod photoreceptor outer segments retain a
relatively uniform diameter from apex to base, while
cone photoreceptor outer segments are broader ba-
sally and taper toward their tips. In both cases, pho-
toreceptor outer segments are formed by extensive
tfolding of the photoreceptor cell membrane; in rods
these “disc membranes” are pinched off and en-
closed by the cell membrane.”’ In contrast to the
case for rods, however, the structural relationship
between vertebrate cone photoreceptor outer seg-
ment disc membranes and their enveloping plasma
membrane remains uncertain, especially in pri-
mates. Conventional ultrastructural studies of non-
mammalian species suggest that the majority of cone
disc membranes remain continuous with the plasma

membrane, and thus the intradiscal spaces are open
to the interphotoreceptor space.? 3% 30- 105125 [t a9
generally been assumed that most if not all of the
discs in mammalian cones are also continuous with
the plasma membrane, but many of the connections
appear to be extremely small.” ' 2 21 29 [n several
species, open intradiscal spaces are more easily visu-
alized in the proximal than in the distal portions of
cone outer segments.® Recent ultrastructural studies
of monkey and human cone photoreceptors have
identified novel regions of outer segments, termed
cone notches, that demarcate a site of abrupt transi-
tion between cone photoreceptor discs that are open
to the interphotoreceptor space and those that ap-
pear isolated. These results suggest that at least at
some levels the gross organization of primate cone
photoreceptor cell outer segment membranes may
be more similar to that of rod photoreceptor cells. A
number of investigators have shown that the fluoro-
chrome Procion yellow selectively associates with
cone outer segments in a variety of species, includ-
ing primates.?® ¥ 828 These investigators have
suggested that this staining may represent dye infil-
tration into open cone discs, although cone-specific
binding of Procion yellow may be a result of prefer-
ential insult to cone membranes rather than a result
of penetration into patent cone discs.

There also appear to be differences in the mecha-
nism of membrane renewal in the outer segments of
rod and cone photoreceptor cells. Rod cell outer seg-
ment discs are added basally and migrate as intact
units toward the apical tip of the outer segment,
where they are ultimately shed. This continuing as-
sembly at the proximal end of the photoreceptor
outer segment is balanced by continuing shedding
of the distal tip of the outer segment such that the
overall length of the outer segment remains con-
stant. In contrast, cone photoreceptor cell outer seg-
ments renew more randomly and show no selective
incorporation of amino acids into the basal region of
the photoreceptor cell outer segment.'>* '** For both
photoreceptor cell types, however, RPE cells appear
to be responsible for the phagocytosis of shed outer
segment membrane and clearance of the interphoto-
receptor space. Cone photoreceptor cell inner seg-
ments are generally larger than those of rod photo-
receptor cells and are densely packed with mito-
chondria. Cone photoreceptor cell bodies typicaily
occupy the outermost layer (nearest the sclera) of
the outer nuclear layer, with the remainder of the
outer nuclear layer being composed of rod cell bod-
ies.

Although rod and cone photoreceptor cells exhibit
differences in their overall structure, function, and
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susceptibility to degeneration in various diseases,
relatively little is known concerning the biochemical
bases for these differences, especially with respect to
cones, Our lack of knowledge pertaining to the mo-
lecular composition of cone photoreceptors is proba-
bly due to an inability to isolate these cells since they
represent only a small percentage of the total popu-
lation of photoreceptors in most species and since,
until recently, few cone photoreceptor cell-specific
probes have been available to aid investigators in
this purification.

Significant new knowledge about the biochemical
and morphological uniqueness of cone photorecep-
tor cells and their surrounding environment is
emerging. For example, new information on compo-
sitional differences between rod and cone photore-
ceptor cells, including differences in the a-subunit of
transducin,® % cyclic guanosine monophosphate
phosphodiesterase,”® neurotransmitters and amino
acid metabolism,?* #8121 cytochrome oxidase ac-
tivity, vitamin D-dependent calcium-binding pro-
tein,’?* ' disc rim protein,'® ' bovine serum
albumin-binding molecules, and carbonic anhy-
drase, have been documented. In addition, cone pho-
toreceptors have been shown to accumulate selec-
tively various sugars, including fucose by goldfish
cone photoreceptor cells,® * galactose by bovine
cone photoreceptor cells,”” and 2-deoxyglucose by
dark-adapted primate cone photoreceptor cells.'*
Additional differences in the molecular composition
of cone photoreceptor cells have been elucidated by
monoclonal antibodies. Lemmon® and Szél and co-
workers'®~13¢ have generated monoclonal antibod-
ies that specifically label cone outer segments in a
variety of species, and Bunt-Milam and coworkers
have generated an antibody that binds to the outer
segments of certain subclasses of cone photoreceptor
cells in a number of species. Similarly, we have gen-
erated a monoclonal antibody that selectively labels
cone but not rod photoreceptor cell plasma and disc
membranes in pig, monkey, and human retinas.
These probes should provide powerful tools with
which to continue to establish the molecular bases
for differences between rod and cone photoreceptor
cells. More recently, molecular biological techniques
have begun to provide some insights into composi-

tional differences between rod and cone photorecep-
tor cells.80- 94 102, 103, 113, 141

Miiller Cell Cytology and Function

Miiller cells are the primary glial elements of the
retina. Unlike neurons of the retina, Miiller cells

span almost the entire width of the retina and ex-
tend radially from the inner limiting membrane at
the vitreal surface to just beyond the level of the
outer limiting membrane where they form junctional
complexes with adjacent photoreceptor cells; their
nuclei are located within the inner nuclear layer. The
scleral surfaces of Miiller cells border the interphoto-
receptor space and extend numerous microvillous
processes into it. Specific membrane-associated
transport systems sequestered in these apical cell
membranes are likely to be involved in controlling to
some extent the composition of the interphotorecep-
tor matrix.''® Miiller cells may also participate in ret-
inal carbohydrate metabolism by serving as a source
of stored nutrients in the form of glycogen,'® in the
degradation of neurotransmitter levels,’?° and in the
regulation of extracellular glutamine levels.''> Main-
tenance of appropriate potassium levels in the retina
by the active pumping of potassium ions into the
vitreous also appears to be a major Miiller cell func-
tion.'%*

Interphotoreceptor Matrix Structure and Function

As described above (see the section on embryo-
logical origins), the interphotoreceptor matrix is
likely to play a major role in maintaining retinal
function by mediating biochemical interactions be-
tween the retina, RPE, and choroidal vasculature.
Ultrastructural studies of the interphotoreceptor ma-
trix have confirmed the presence of amorphous ex-
tracellular substance within the interphotoreceptor
space in a variety of species, including monkeys and
humans.*® ' Thick cuffs of amorphous material are
observed to encapsulate most cone photoreceptor
cell outer segments, in contrast to the finely granular
material interspersed between adjacent rod photore-
ceptors.*® 72

Early investigations identified the presence of
anionic, carbohydrate-containing molecules in
the interphotoreceptor matrix of a variety of
species including monkeys and hu-
mans*5-47, 49. 56, 74, 81, 90, 117, 123, 143, 156, observed
susceptibility of some of these interphotoreceptor
matrix components to specific enzyme treatments in-
dicated that both glycoproteins and glycosaminogly-
cans are constituents. More recent studies employ-
ing lectin histochemistry have provided substantial
additional information as to the nature of carbohy-
drate-containing molecules within the interphotore-
ceptor matrix, 16 3% 73 76. 78, 97, 118, 138-140, 148" Qe of
the most striking contributions of these lectin-based
studies has been the identification of microdomains
of interphotoreceptor matrix glycoconjugates. These
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studies have demonstrated that interphotoreceptor
matrix components are heterogeneously distributed
and that the heterogeneities fall into two basic pat-
terns, those showing apical-basal differences and
those showing photoreceptor cell type-specific dif-
ferences in composition. Wheat germ agglutinin—
binding glycoconjugates in monkeys and humans are
present within the interphotoreceptor matrix sur-
rounding rod photoreceptors and are virtually ab-
sent in the interphotoreceptor matrix surrounding
cone photoreceptor cells.®® ''® Additional evidence
for compartmentalization of some molecules con-
tained in the interphotoreceptor matrix has been
provided by investigations of the distribution of
PNA-binding molecules. PNA-binding molecules in
monkey and human retinas are specifically localized
to domains of cone photoreceptor cell-associated in-
terphotoreceptor matrix. The existence of cone ma-
trix sheaths in human retinas has been confirmed
by histochemical staining with a cationic copper
phthalocyanin dye, cuprolinic blue.>* 68 72-73. 76. 143

The majority of studies directed toward biochem-
ical characterization of the interphotoreceptor matrix
have concentrated on its soluble rather than insolu-
ble components.'* ¢! © Recently, however, investi-
gations have focused on characterizing the aqueous,
insoluble components of the interphotoreceptor ma-
trix (Fig 6—4,A). In higher vertebrate species, includ-
ing monkeys and humans, these components ap-
pear to constitute a significant portion of the
interphotoreceptor matrix as compared with soluble
constituents.

The soluble fraction of the interphotoreceptor ma-
trix from bovine eyes consists predominantly of pro-
tein and glycoprotein (98%) with some glycosamino-
glycan (2%). The most prominent proteins identified
by sodium dodecyl sulfate— polyacrylamide gel elec-
trophoresis include bands of 47 kD and 140 kD.*
Similar proteins have been identified in the inter-
photoreceptor matrix of human retinas.! The major
soluble glycoprotein (140 kD) of the interphoto-
receptor matrix is an interstitial retinol-binding pro-
tein.?” 3% 10 1n addition, a number of other soluble
interphotoreceptor matrix proteins and glycopro-
teins have been identified; these include mucinlike
glycoproteins,” a variety of enzymes,® a cyclic gua-
nosine monophosphate—phosphodiesterase,' solu-
ble antigen,'® trophic factors (Adler and Hewitt,
unpublished data), and a variety of serum-contain-
ing proteins, including immunoglobulins and albu-
min.® % In addition, small- molecular weight, solu-
ble glycosaminoglycans have been identified. These
may be degradation products of larger interphotore-
ceptor proteoglycans.

FIG 6-4.

Fluorescence light micrograph depicting an isolated cone
matrix sheath exposed to fluorescein-conjugated PNA.
Cone matrix sheaths examined in this manner show a dis-
tinct substructure with numerous longitudinally orientated fi-
bers extending the entire length of the sheath (arrowheads).
These longitudinal structures appear to be interconnected
by a finer anastomosing fibrous network. In addition, longi-
tudinal fibers appear to insert into distinct fibrous rings of
similar dimension at both the proximal and distal ends of the
sheath (arrows).

More recent biochemical and immunocytochemi-
cal studies have confirmed that a large proportion
of the interphotoreceptor matrix is composed of
aqueous-insoluble glycoconjugates. These include
proteoglycans which contain chondroitin 4-sulfate
and chondroitin 6-sulfate.®> ' Chondroitin 4-sul-
fate is distributed uniformly throughout the matrix,
whereas chondroitin 6-sulfate proteoglycan is associ-
ated specifically with cone matrix sheaths,® and
may be a component of a larger proteoglycan inter-
calated within the cone photoreceptor cell plasma
membrane. Based on high-performance liquid-size
exclusion chromatography, the major constituent of
cone matrix sheaths is resolved as a peak approxi-
mately 800 kD, which suggests that cone matrix
sheaths are composed of extremely high molecule
weight proteoglycans or proteoglycan aggregates. In
addition to chondroitin 6-sulfate glycosaminoglycan,
cone matrix sheath proteoglycans contain a signifi-
cant quantity of O-linked oligosaccharides that bind
PNA.

Relatively little is known about the function of
most of the interphotoreceptor matrix constituents.
Perhaps the only interphotoreceptor matrix mole-
cules that have been characterized with respect to
function are interstitial retinol-binding proteins and
vitamin A. Preliminary studies in a number of labo-
ratories® 7% 128/ 167 168 g g0est that cone matrix
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sheath—associated constituents may indeed partici-
pate in retinal adhesion, since cone matrix sheaths
retain their cellular attachments and become ex-
tremely elongated in experiments in which the ret-
ina is gently peeled from the pigmented epithelium
immediately following enucleation. Intravitreal in-
jection of xylosides (compounds that disrupt proteo-
glycan synthesis) results in cone matrix sheath dis-
ruption and localized retinal detachments (Lazarus
and Hageman, 1989). Intravitreal or subretinal injec-
tions of chondroitinase or neuraminidase reduce ad-
hesion by as much as 80% without affecting retinal
function or histology.

It appears that rod photoreceptor cells are the pri-
mary cells involved in the synthesis of interstitial
retinol-binding protein and its subsequent secretion
into the interphotoreceptor matrix.” ?% 67 116 [t has
also been demonstrated that a number of interpho-
toreceptor matrix—containing constituents originate
from the systemic vasculature and are transported
into the interphotoreceptor space by the retinal pig-
mented epithelium.®!

PATHOLOGIES AFFECTING THE
RPE-PHOTORECEPTOR-
INTERPHOTORECEPTOR MATRIX
COMPLEX

Pathologies affecting the RPE-photoreceptor-inter-
photoreceptor matrix interface have been reported in
association with human disease and animal models.
Such pathologies may be the direct result of abnor-
malities in either RPE or photoreceptor cells. Be-
cause of their close structural and functional rela-
tionships (see the previous section on structure and
function of the interface), an abnormality in one of
these cell types might be expected to influence the
viability of the other. It can be speculated that this
phenomenon would most often involve a primary
abnormality in retinal pigmented epithelial cells that
secondarily affects photoreceptor cells because of the
numerous functions crucial to photoreceptor homeo-
stasis that are performed by retinal pigmented epi-
thelial cells. Such is the case for the RCS rat (see a
later section), which exhibits a retinal pigmented
epithelium-based pathology that indirectly results
in photoreceptor cell death. Conversely, in a num-
ber of mutant mouse strains (see the later section on
retinal-degenerative mice) the primary abnormalities
are in photoreceptor cells themselves.

Our understanding of abnormalities affecting the
RPE-photoreceptor interface comes largely from
studies of animals, while less is known concerning
the cellular bases of human retinal pathologies (see

Chapters 42 and 43). Since a number of comprehen-
sive reviews pertaining to animals exhibiting retinal
degeneration have been published,* only a few spe-
cific examples are described below.

RPE-Based Pathologies

RCS Rat

The best characterized of retinal pigmented
epithelium-based pathologies is that exhibited by
the RCS rat.'® #* 3 % This mutant strain of rat has a
defect that affects the ability of retinal pigmented ep-
ithelial cells to phagocytose shed photoreceptor cell
outer segment membrane. Photoreceptor cells de-
velop apparently normally until about 18 days post-
natally, but degenerate thereafter. As a result, the
interphotoreceptor (subretinal) space becomes filled
with membranous debris.®” ® The recognition and
binding of photoreceptor cell outer segments at the
apical surfaces of RCS retinal pigmented epithelial
cells may be normal, the defect specifically affecting
phagocytosis. It has recently been shown ** that rod
death can be prevented by various “sham opera-
tions” on the retina and especially by subretinal or
intraretinal injection of basal fibroblast growth factor
(bFGF). This is a constituent of the normal interpho-
toreceptor matrix (personal observations) and there-
fore the lack of specific trophic factors, derived from
RPE, leads to the death of rods in the RCS rat.

Mucopolysaccharidosis Vi

Feline mucopolysaccharidosis VI (MPS VI) is an
inherited disease affecting the lysosomal enzyme ar-
ylsulfatase B. Animals with this enzymatic defect ex-
hibit large intracellular accumulations of dermatan
sulfate owing to their inability to degrade this gly-
cosaminoglycan.?® This abnormality is systemically
widespread but especially notable in cells of the ret-
inal pigmented epithelium, which because of their
highly phagocytic nature accumulate numerous
membrane-bound inclusions containing poorly de-
graded glycosaminoglycans.® These inclusions are
present at the time of birth of affected animals, in-
crease in size and number with time, and ultimately
result in massive hypertrophy of the retinal pig-
mented epithelium. This hypertrophy disrupts the
normal orientation of adjacent photoreceptor outer
segments but apparently does not result in photore-
ceptor cell death.® Retinal pigmented epithelial cells
from cats with MPS VI thus appear to be capable of
continued phagocytosis of shed photoreceptor cell
outer segment membrane and physiological support
of photoreceptor cells in spite of the fact that they
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have an important enzymatic defect and are severely
hypertrophied.

Photoreceptor Cell-Based Pathologies

Retinal-Degenerative Mice

A number of mutant mouse strains exhibiting in-
herited photoreceptor cell degeneration have been
described. The best characterized of these are the
rd (retinal degenerationss' 8), rds (retinal degenera-
tion slow''® ), and pcd (Purkinje cell degenera-
tion® %), Each of these mutants exhibits degenera-
tion and death of photoreceptor cells, but with dif-
fering time courses. For example, almost all photore-
ceptor cells degenerate in homozygous rd mice by 2
months postnatally, while some viable photorecep-
tors remain in rds and pcd retinas as late as 1 year
postnatally. In each of these mutants, the defect ap-
pears to be expressed in photoreceptor cells and
leads directly to their death and degeneration. Spe-
cific biochemical defects have not been identified for
any of these mutants; however, the rd strain devel-
ops abnormally high accumulations of cyclic guano-
sine monophosphate,* the result of an abnormality
in the o subunit of the specific rod. Phosphodi-
esterase, which hydrolyses cyclic guanosine mono-
phosphate in the matrix is greatly altered, but there
are no known secondary changes in the RPE.* *

Progressive Rod-Cone Degeneration

Miniature poodles exhibit an inherited disease,
termed progressive rod-cone degeneration, that di-
rectly affects both rod and cone photoreceptor cells.
This is a late-onset disease occurring after photore-
ceptor cells have fully differentiated in apparently
normal fashion.” Later, individual rod outer seg-
ments become disordered, and die. Similar changes
occur in cone outer segments, but slightly later than
in rods. Ultimately, photoreceptor cell outer seg-
ments are completely lost, and degeneration of pho-
toreceptor cell inner segments and cell bodies oc-
curs. Late in the disease process, cells of the retinal
pigmented epithelium are observed to become hy-
pertrophied and may invade the remaining neural
retina.
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