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The d-Wave

Laura J. Frishman
Chester Karwoski

The d-wave is a positive-going initial deflection in
the electroretinogram (ERG) at light offset. This pos-
itive deflection is characteristic of the photopic ERG.
In the scotopic ERG, the initial deflection at light off-
set is negative going, and (in mammals) it appears to
be the offset of PII.*>® Although positive d-waves
have been described in the scotopic ERG of some
species, they are probably not true d-waves. For ex-
ample, in amphibia, Tomita'> has argued that the
rod-specific positive “d-wave” has a long latency
and is probably the e-wave instead (see Chapter 13).
Similarly, in cats, as described for mammals below,
Brown? has pointed out that positive deflection oc-
curs too late to be a true d-wave.

Although the d-wave is present in vertebrates
from amphibians to mammals, it has received less
study than the prominent components at light onset
(a- and b-waves). In part, this may be because the d-
wave is small in mixed retinas that have more rods
than cones. In animals where the d-wave is promi-
nent, it simply may be because vision researchers
have traditionally presented light flashes rather than
dark flashes. Nevertheless, there is some informa-
tion regarding its origin, and this is discussed here
separately for cold- and warm-blooded species.

In cold-blooded species, the d-wave is positive going
when recorded on the cornea or in the vitreous and
negative going when recorded in the distal half of
the retina (Fig 12-1). This depth profile is compati-
ble with the d-wave representing the photoreceptor
off-response. Furthermore, many studies have
shown that photoreceptors can contribute to the d-
wave since a significant extracellular receptor poten-
tial can be recorded after postreceptoral neural activ-
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ity has been pharmacologically blocked, e.g., in the
frog'* and the mud puppy.'’ However, results from
these latter studies agree that cells postsynaptic to
the photoreceptors also make a major contribution
to the d-wave.

Dick* and Stockton and Slaughter'' present data
supporting the idea that the d-wave is generated by
K* spatial buffer currents in Miiller cells and that
these currents are initiated by a light-evoked in-
crease in [K |, that is caused by activity in horizon-
tal cells and/or in hyperpolarizing bipolar cells. The
theory is supported by the observation that Miiller
cells show a depolarizing off-response.'® However, a
direct contribution from horizontal cells and from
hyperpolarizing bipolar cells has not been excluded.

A depth profile of the d-wave in the frog (see Fig
12-1) shows that this response has a relatively long
rise time and peak time in the proximal retina but
has a short rise time and peak time in the distal ret-
ina.' It is possible that the slower component is due
to Miiller cell activity whereas the faster component
arises from the photoreceptors. The specific contri-
bution of each of these processes to the corneal ERG
of amphibians remains uncertain.

In mammals, the d-wave also is a positive deflec-
tion at light offset in the photopic ERG. Figure 12-2
shows the d-wave in two retinas: one from the all-
cone retina of the squirrel that lacks a positive-going
c-wave' 2 and one from a monkey retina with mixed
input from rods and cones that shows both c- and
d-waves.” Intraretinal analysis of the monkey d-
wave indicates that it represents a combination of
the distinctive rapid offset of the cone late receptor
potential (which is positive going), followed by the
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FIG 12-1.

Series of depth recordings of an ERG of isolated frog retina.
The b- and d-waves are recorded at all depths, whereas the
a-wave is only seen in the receptor layer and the distal part
of the inner nuclear layer. The d-wave is relatively sharp at
the depths where the a-wave is present, which is compati-
ble with the off-response of the late receptor potential con-
tributing to the d-wave. More proximally, where the d-wave
is slower, the receptor contribution may be less and a Milller
cell contribution more important. (From Yanagida T, Ko-
shimizu M, Kawasaki K: Jon J Ophthalmo! 1986; 30:
298-305. Used by permission.)

negative-going offset of PIl component.” The fast
offset of the cone receptor potential was viewed
clearly by using long-wavelength stimuli under
photopic conditions in the monkey after clamping
of the retinal circulation to isolate the photorecep-
tors® ' and in excised human retina in the presence
of aspartate.'®

Granit® described a d-wave in the predominately
rod ERG of the cat, but an analysis by Brown? indi-
cated that it was not a true d-wave. This “d-wave”
only occurred in response to the offset of very in-
tense stimuli of long duration when the decay of
the rod receptor potential, which is generally quite
slow,* '* was rapid enough to become visible. It ap-
peared as a small positive deflection in the ERG that
followed an initial negativity, the offset of PII. Thus,
even though the offset of the rod receptor potential
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Mammalian ERGs with d-waves. A, ERG from the all-cone
retina of the squirrel. Recordings were made under light-
adapted conditions between a contact lens electrode an the
cornea and an electrode on the forehead. (From Brown KT:
Vision Res 1968; 8:633—677 and Arden GB, Tansley K: J
Physiol 1955; 127:592-602.) B, ERG of the dark-adapted
cynomolgus monkey to a 640-nm pulse of light far above
threshold. Recordings were made in the isolated arterially
perfused cat eye preparation between electrodes that con-
tacted the cornea and the sclera. {Adapted from Evers HU,
Gouras P: Vision Res 1986; 26:245—-254.)

was quickened, it was not the initial deflection after
stimulus offset, and therefore it did not form a true
“d-wave.”

The positive-going return of the rod receptor po-
tential to baseline also is seen in the light-adapted
ERG of cat after the negative offset of PIL.” In con-
trast, in the scotopic ERG of the cat, for dim stimuli,
the offset of PII is followed by a slow recovery to-
ward baseline that is termed “remnant negativity”
by Granit® that can be distinguished from the recep-
tor potential. It is a slow, negative response of more
proximal origin that is abolished by 2-amino-4-
phosphobutyric acid (APB).®

In summary, the corneal d-wave in mammals (cat
and monkey) is largely produced by the positive-
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going offset of the late receptor potential. It is fur-
ther shaped by the negative-going offset of PII.
However, in mammals, unlike in cold-blooded spe-
cies, to date there is little evidence for a positive-
going d-wave component that originates in the prox-
imal retina, either directly by neurons or indirectly

Origin of Electroretinographic Components

by K* spatial buffering.
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