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The M-Wave

Chester Karwoski
Laura J. Frishman

Like the proximal negative response (PNR), the M-
wave is a light-evoked field potential that can be re-
corded in the proximal retina. It was named and
most fully described in amphibians by Karwoski and
Proenza,'” ' although possibly related responses
have been reported by several groups since the stud-
ies of Arden and Brown' and Byzov.* The M-wave
consists of a slow, negative-going response at both
light onset and offset to a small, well-centered spot
(see Fig 13-1). Annular and diffuse illumination
elicit complex waveforms, sometimes dominated by
the b-wave. The M-wave has recently been de-
scribed in detail in the cat,'® and thus is likely to be a
general feature in the vertebrate retina.

Because the M-wave has maximum amplitude at
the same depth as the PNR,® it is likely that it origi-
nates from events in the inner plexiform layer. In
amphibians, the time course and stimulus depen-
dence of the M-wave are similar to that of intracellu-
lar Miiller cell responses as well as to light-evoked
increases in [K¥], in the inner plexiform layer.s' 1
This led to the model of M-wave generation that is
schematized in Figure 13-1. Here, light evokes re-
sponses in proximal neurons, K™ is released into the
extracellular space, and this K* generates currents
due to spatial buffering in Miiller cells. The model
explains most intraretinal features of the M-wave,
including its negative polarity. Figure 14-1 shows
that certain key features of this model also hold for
the M-wave in the cat.* '*> The model receives addi-
tional support from experiments in amphibian reti-
nas with the K™ channel blocker barium (Ba2*): Ba%*
has minor effects on light-evoked neural activity and
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the increase in [K*], in the proximal retina, but it
blocks Miiller cell K conductance, K" spatial buffer-
ing by Miiller cells, and the M-wave.” *

As is the case with the PNR, any contribution of
the M-wave to the transretinal electroretinogram
(ERG) would be important as an index of proximal
retinal activity. The M-wave can be recorded in the
thin layer of residual vitreous after most has been
drained,® ' but the nature of M-wave contribution
to the normal transretinal ERG in amphibians is un-
certain. In superfused amphibian eyecups, computer
averaging of the responses elicited by a small, dim
light spot and recorded in the superfusate reveals a
negative-going PNR followed by a slow, positive po-
tential (C.]. Karwoski, unpublished observation).
The origin of this positive potential has not yet been
explored.

In the cat, the M-wave may contribute a small
negativity to the flash ERG, but any such contribu-
tion is small, in part because a diffuse flash is a poor
stimulus for the M-wave.'? Under light-adapted con-
ditions in response to small spots, the M-wave is the
most prominent potential that can be recorded intra-
retinally in the cat. However, even under these stim-
ulus conditions, the contribution of the M-wave, as
a negative potential, is small relative to that of PII,
which dominates the ERG as a positive potential.'
(Under dark-adapted conditions, another proximal
retinal response, the scotopic threshold response
(STR), also contributes a negative potential to the
ERG. The STR is described in Chapter 15.)

The contribution of the M-wave to the ERG may
be greater when periodic stimuli (such as grating
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FIG 14-1.

The PNR, M-wave, and light-evoked increases in extracellu-
lar potassium concentration ([K*],) recorded in the proximal
retina of the cat. A, Recording of the M-wave with an unusu-
ally large initial transient following stimulus onset that has
the appearance of the PNR in cold-blooded animals (arrow)
(flash diameter, 0.8 degrees; background illumination, 9.7
log q deg=2s™"; flash illumination, 10.8). (Adapted from
Sieving PA, Frishman LJ, Steinberg RH: J Neurophysiol
1986; 56:1039-1048.) B, M-wave and V- recorded simul-
taneously with a double-barreled K*-selective microelec-
trode. The maximum K* increase was about 0.18mM for the
on response. Other details are similar to A. (Adapted from
Frishman LJ, Sieving PA, Steinberg RH: Vis Neurosci 1988;
1:307-315.)

patterns that stimulate large regions of retina) are
used. Sieving and Steinberg'* presented evidence
that the M-wave is tuned to a spot diameter similar
to the bar width of the optimal spatial frequency for
the intraretinal pattern ERG in the cat, and they sug-
gested that the M-wave contributes to the pattern
ERG.

The light-adapted diffuse flash ERG of several
mammals (e.g., the cat,® rabbit,'* and monkey* 1?)
contains negative potentials at light onset and offset,
and these have a time course similar to the M-wave
of the proximal retina. However, these responses
sum spatially over a much larger area than the M-
wave.” Moreover, the negative on response gener-
ally is not affected by 2-amino-4-phosphonobutyric
acid (APB),> '* which blocks the transmission of
photoreceptor signals to on bipolar cells.'® This indi-
cates that the response arises in the photoreceptors.
Analysis with scotopically matched red and blue fil-
ters in the cat shows that it is the rod-receptor po-
tential.” (An exception in the cat occurs at very high
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background illuminations where APB reduces the
amplitude of a transient cone-dominated negative
on response.”)

The negative off component of the light-adapted
ERG is abolished by APB in the rabbit and substan-
tially reduced in the monkey12 and the cat,®> which
suggests that the offset of PlI (rod and cone) contrib-
utes to this component. The negative off response
that remains is cone dominated in the cat. It origi-
nates proximal to the photoreceptors in the off path-
way because it is abolished by aspartate,” which iso-
lates the photoreceptor response.'® The exact locus
of origin of the cone off response (and of the cone-
dominated negative on response in cats) is currently
unknown.

Note: Oakley et al. have provided evidence for
the M-wave in toads having an origin involving K™
spatial buffering in Muller cells, and for the M-wave
appearing as a positive-going potential in the ERG
recorded in the vitreous humor.
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