Principles and Practice of Clinical
Electrophysiology of Vision

Editors

Joun R. Heckeniivery, M.D.
Professor of Ophthalmology

Jules Stein Eye Institute

Los Angeles, California

Georrrey B. Arben, M.D., Pu.D.

Professor of Ophthalmology and
Neurophysiology

Institute of Ophthalmology

Moorfields Eye Hospital

London, England

hVA \I\(/(Iegf'bgook

St. Louis  Baltimore  Boston  Chicago

Associate Editors

Emiko Apbacui-Usami, M.D.
Professor of Ophthalmology

Chiba University School of Medicine
Chiba, Japan

G.F.A. Harping, Pu.D.
Professor of Neurosciences
Department of Vision Sciences
Aston University
Birmingham, England

Sven Erik Nitsson, M.D., Pu.D.
Professor of Ophthalmology

University of Linkoping

Linképing, Sweden

RicHarp G. WeLeser, M.D.

Professor of Ophthalmology

University of Oregon Health Science Center
Portland, Oregon

London  Philadelphia ~ Sydney  Toronto



th Mosby
Year Book
Dedicated to Publishing Excellence

Sponsoring Editor: David K. Marshall

Assistant Director, Manuscript Services: Frances M. Perveiler
Production Project Coordinator: Karen E. Halm

Proofroom Manager: Barbara Kelly

Copyright © 1991 by Mosby-Year Book, Inc.
A Year Book Medical Publishers imprint of Mosby-Year Book, Inc.

Mosby-Year Book, Inc.
11830 Westline Industrial Drive
St. Louis, MO 63146

All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from the pub-
lisher. Printed in the United States of America.

Permission to photocopy or reproduce solely for internal or per-
sonal use is permitted for libraries or other users registered with
the Copyright Clearance Center, provided that the base fee of
$4.00 per chapter plus $.10 per page is paid directly to the Copy-
right Clearance Center, 21 Congress Street, Salem, MA 01970.
This consent does not extend to other kinds of copying, such as
copying for general distribution, for advertising or promotional
purposes, for creating new collected works, or for resale.

1 23 4567 89 0CLCL MV 9 9 93 92 91

Library of Congress Cataloging-in-Publication Data
Principles and practice of visual electrophysiology / [edited by]
John R. Heckenlively, Geoffrey B. Arden.
p- cm.
Includes bibliographical references.
Includes index.
ISBN 0-8151-4290-0
1. Electroretinography. 2. Electrooculography. 3. Visual
evoked response. 1. Heckenlively, John R. II. Arden,
Geoffrey B. (Geoffrey Bernard)
[DNLM: 1. Electrooculography. 2. Electrophysiology.
3. Electroretinography. 4. Evoked Potentials,
Visual. 5. Vision
Disorders— physiopathology. WW 270 P957]

RE79.E4P75 1991 91-13378
617.7 1547 —dc20 CIP
DNLM/DLC

for Library of Congress



PART VI—

Data Acquisition and Analysis

229



Analytical Techniques

L. Henk van der Tweel
Oscar Estévez

Visual electrophysiologists have at present a wide
choice of instruments at their disposal, from direct
recorders to sophisticated computers. This enables
them to record ever smaller responses and to im-
prove their quality. “Thresholds,” defined as the
weakest stimuli evoking recognizable responses, are
continuously dropping, and the range and type of
electroretinogram (ERG) and visual evoked potential
(VEP) stimuli have been regularly extended. In addi-
tion, computer-based analytical methods are increas-
ingly being used for the characterization of re-
sponses.

A proper selection from these modern methods
requires knowledge about the principles of signal
analysis on which they are based. These same prin-
ciples apply to many quantitative aspects of visual
function. The present chapter is meant to help the
researcher and the clinician to find their way among
the multitude of published methods. Emphasis will
be laid less on mathematical rigor than on the un-
derstanding of fundamental concepts. The topics to
be covered are (1) the recording and processing of
electrical responses and (2) analytical questions con-
cerning the stimulus and response characterization.

The unavoidable presence of noise (e.g., the back-
ground electroencephalogram [EEG]) demands pro-
cedures for noise reduction, especially if weak stim-
uli are presented. This can be done in a variety of
ways, but in clinical practice it is often most impor-
tant to reduce the recording time, which has encour-
aged the use of more “efficient” methods such as,
for instance, the so-called steady-state stimulation. It
is intended that the present chapter will enable the
evaluation of such techniques.

2

For a long time nearly all ERGs and VEPs were re-
corded with flashes. The responses obtained in this
way are often complex and more prone to the effects
of strong nonlinearities (for a definition of this
term, see below). However, by employing stimuli
with other waveforms, among which sinusoidal
modulation is the most frequent, it is easier to recog-
nize deviations from linearity and to identify sig-
nificant nonlinear properties of the system under
study. An added advantage of sinusoidal stimuli is
that linearity can often be approximated to a satisfac-
tory degree, which facilitates analysis and descrip-
tion.

More recently homogeneous field stimulation has
been superseded by the use of spatially structured
fields such as checkerboards and sine wave gratings.
This type of research has developed in two main di-
rections:

1. Characteristics such as amplitude, wave shape,
and latency are used to discriminate between normal
and pathological responses. In this case only rather
elementary methods of signal improvement need be
employed.

2. The responses are used as a criterion for the
“effectiveness” of a changing stimulus, e.g., when
the size of checks in a checkerboard or the periodic-
ity and the contrast of a grating are manipulated to
obtain a constant response. The results of such stud-
ies are often expressed as a contrast sensitivity func-
tion (transfer function). The theoretical background,
however, is complicated and requires among other
things an analytical characterization of the stimulus,
e.g., that of a checkerboard.

231
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BASIC CONCEPTS OF SIGNAL ANALYSIS
Linearity

One approach to analyzing the results of clinical
electrophysiology is to treat all stimuli as if they
were transduced and processed by a “black box” be-
tween the stimulus and recorded response. The sim-
plest assumption that can be made about the black
box is that of linearity, even though no biological
system strictly fulfills such a condition.

The definition of a linear system is that it obeys
the “superposition principle.” Assume that A and B
are (quantifiable) input signals (e.g., stimuli) that re-
sult respectively in outputs C and D of the system
under study. Let us use — to signify “produces the
response” so that we have A— C and B— D. In this
case we say that a system is linear if A + B— C +
D. A consequence of linearity is that the amplitude
of the response is strictly proportional to that of the
input. Input and output do not need to belong to
the same physical category; they may, for instance,
represent light values and voltage respectively as in
Figure 29-1, where the upper traces represent the
voltage of the ERG of an anesthesized cat and the
lower ones the modulation of the intense light
source that was employed.”

A cardinal property of linear systems concerns the
harmonic function A sin 2muft (Fig 29-2). It is the
only function that retains its identity (its sinusoidal
shape and its period) when submitted to a linear
transformation; a light input A sin 2=ft will, for in-
stance, evoke a response B sin (2nft + ®) with, in
general, B different from A and ® an added phase
shift. A direct consequence of this property is that,
at the output of a linear system, no new frequencies
are generated from any input, no matter how com-
plex that input is.

In physics, basic (passive) elements like capaci-
ties, inductances, resistances, and their combina-
tions are the simplest linear elements; however,
complex (active) devices like electronic amplifiers
can also approach linearity to a large degree.

Frequency Dependence

The ratio of output to input amplitudes of har-
monic functions will in general depend on fre-
quency; this is expressed in the “amplitude charac-
teristic,” i.e., the normalized ratio of output to input
amplitude as a function of frequency. Similarly the
“phase characteristic” is defined as the function rep-
resenting the phase shift between the output and
the input for all frequencies. Together they fully de-
fine the input-output relation of any linear “black
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FIG 29-1.

An early example of the responses of a reasonably linear
“black box” in which light is translated into voltage. The
ERG of an anesthetized cat is recorded with sinusoidally
modulated light (retinal illumination, 50,000 trolands; field,
56 degrees; 25% respectively; 50% modulation depth;
range, 0.5 to 25 Hz; upper traces, ERG; lower traces, pho-
tocell signal of illumination). Responses approach the sinu-
soidal shape, a property of linear systems. (From Van der
Tweel LH, Visser P: Electrical responses of the retina to si-
nusoidally modulated light, in Electroretinographia. Acta
Facultatis Medicae Universitatis Brunensis, 1959, pp
185-196, Lekarska Fakulta University Brne. Used by per-
mission.)

box” for arbitrary signals. In filter theory often the
two characteristics are combined into the “transfer
function.”

As an example of the usefulness of this represen-
tation, we show in Figure 29-3 the amplitude and
phase characteristics of the occipital VEPs of two
subjects to sinusoidally modulated light.'® The re-
sponses of both subjects A and B are approximately
sinusoidal and show preference for frequencies
around 10 Hz. The sharpness (selectivity) of the am-
plitude plot, however, is much more prominent in B
than in A, which is also reflected (as should be ex-
pected in a quasilinear system) in the steep course of
the phase characteristics around 10 Hz of subject B.
At the same time, B exhibits a strong monorhythmic
persistent alpha rhythm. The responses have been
proved to add to the spontaneous activity without
any indication of entrainment phenomena.
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A, an elementary sine wave: A sin (2nft + ®) with the period T = 1/f. In the example ® = 5x/6 (150 degrees). An equivalent
mathematical representation of the same curve is A cos 2~nft — @) with ® = /3 (60 degrees). B, in case light is modulated,
amplitude is given in percent modulation depth (percentage of the average light level)
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logarithmic one. The linear phase shift with frequenc
LH, Verduyn Lunel HFE: Human visual responses to
18:587-598. Used by permission.)

y is equivalent to a delay of approximately 250 ms. (From Van der Tweel
sinusoidally modulated light. Electroencephalogr Clin Neurophysiol 1965;
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Note that there is no sense in talking about phase
relations between sinusoidal signals with different
frequencies. If a signal contains more than one fre-
quency, the phase relationship between any two fre-
quencies will vary according to the moment of ob-
servation. This applies even to the harmonically
related frequencies of a periodic wave shape. For ex-
ample, Figure 29-4 shows a sine wave and its sec-
ond harmonic. The phase relationship during one
period is different for each point along the x-axis.
For certain purposes a characteristic point may be
chosen as a reference, for instance, when the voltage
changes its sign from negative to positive (positive
Zero-crossing)

Minimum-Phase Rule, Delay, and Latency

In every physically realizable system a noncon-
stant amplitude/frequency response is necessarily
accompanied by phase shifts that are a function of
frequency. In systems without active components
(i.e., if only capacities, inductances, and resistances
are present) the phase characteristic can be fully cal-
culated from the amplitude characteristic. This is a
consequence of what is known as the “minimum-
phase rule.” If active components are included,
phase shifts will often be larger but can never be
smaller than the calculated minimum phase for a
passive system. The attenuated high-frequency sig-
nal at the output of a single low-pass filter, for in-
stance, must be accompanied by a phase shift up to
90 degrees for frequencies approaching infinity. Dif-
ferent amplitude characteristics are necessarily ac-
companied by different phase characteristics. How-
ever, the reverse is not true: different phase
characteristics can be associated with the same am-
plitude plot.

An important example of phase shifting without
amplitude changes is when a pure delay or latency

J/ T

FIG 29-4.

Two harmonically related frequencies. Both phases were
chosen to be zero at t = 0. At point 7/2, the phase at fre-
quency f, = 1/T is m; at frequency f, = 2/T the phase is zero
again, i.e., 2w (shifted a whole period).

is involved. In that case the phase changes propor-
tionally to the frequency. The relation is as follows:

T = (P — P)27(f, - fy) (1)

with 7 the delay and ® the phase shift in radians. In
Figure 29-5, the “responses” are subject to a delay
of 25 ms. For sinusoidal stimulus “A” at 30 Hz the
phase delay is 450 degrees, more than one full cycle;
B exhibits a phase shift of 270 degrees at 50 Hz. The
difference is 180 degrees (). The formula then reads
T = m/(2m - 20), which yields a delay of 25 ms, as ex-
pected. Note that, if the delay were to be much
longer, the phase angles at both frequencies would
include more periods, and these extra periods
should also be taken into account. If one wishes to
avoid ambiguities, a series of closely spaced frequen-
cies should be used. The ensuing phase-frequency
regression line should (minimum-phase corrections
applied) within experimental accuracy pass either
through the origin (f = 0, ® = 0) or through ® =
*.

With due caution, therefore, the formula allows
for an efficient way to estimate VEP or ERG laten-
cies: by using a frequency band where the response
is reasonably sinusoidal and its amplitude does not
change too much with frequency. If the amplitude
dependency is strong, there will be extra phase
shifts that can be estimated from the minimum-
phase rule and used for correction.

From the above, it follows that in principle one
should not use the phase shift (or, for instance, the
peak of the sinusoidal response) at a given fre-
quency as a criterion for delay. Not only are there

msecC

T=25 msec

FIG 29-5.

Phase shifts (5m/2 and 3w/2) at frequencies of 50 Hz (B)
and 30 Hz (A) due to a delay of 25 ms. This delay obeys the
formula: T = (&, — ®,)/2n(f, — f,)



extra phase shifts possible due to the minimum-
phase rule, but there is still another source of error
that can trap even the most eminent: due to the pe-
riodic character of the stimulus, as was explained
above, one or more periods may be missed. This
mistake will be mostly evident when unrealistic de-
lays are obtained, but also ambiguities of only half a
period may occur. The point to keep in mind is that
an increase in light, for instance, has no obligatory
relation to the polarity of an electrical response. This
is self-evident when recording VEPs because their
polarity will also depend on electrode placement.
Even when different frequencies are employed, the
results must be interpreted with care. For example,
Figure 29-1 shows the cat ERG in response to
bright, flickering, sinusoidally modulated light of
various frequencies. Since the responses are reason-
ably sinusoidal, linearity is approached. At 0.5 Hz,
the phase angle is about 90 degrees and at 3 Hz
about 180 degrees. Applying our equation for delay
suggests that the latency would be about 100 ms.
Now this is quite unlikely, and the probable expla-
nation is that the ERG to this bright modulated light
is generated by more than one process, one cornea-
positive and the other cornea-negative, and the am-
plitude characteristics of the two are very different.

There is a special problem with regard to latency
determination of (steady-state) VEPs with pattern re-
versal. Whereas for homogeneous fields sinusoidal
modulation is to be preferred, the same is not the
case for patterns because abrupt reversal gives a
much better defined moment of activation than sinu-
soidal modulation does. In the latter case the actual
moment of excitation will be dependent on the con-
trast. On the other hand, because abrupt transitions
will dominate observation, sine wave modulation is
better suited for psychophysical experiments.

Distortion

We have already mentioned that every linear sys-
tem made of real physical components will exhibit
frequency-dependent characteristics. This means
that the relation between the original input ampli-
tudes and phases at different frequencies will be
subject to alteration, i.e., the output wave shape will
not in general resemble the input: it will be dis-
torted. This is called linear distortion because the su-
perposition principle applies all the same to the out-
put components. According to Fourier theory, as
will be explained below, the shape of an arbitrary in-
put signal is determined by the amplitudes and
phases of the frequencies of which it is composed.
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Since in any real system the relation between input
and output amplitudes and phases will depend on
frequency, the output shape must differ from that of
the input. Shape distortion is only absent in cases
where the input is a pure harmonic function, when
a sinusoidal input results in a sinusoidal output.

A type of linear distortion that will nearly always
be present is attenuation of high frequencies. In me-
chanics this attenuation is due to inertia, in electric-
ity to (stray) capacitances, and in electrophysiology,
diffusion processes (among others) play a similar
role. Flicker fusion is an example of high-frequency
attenuation, but the ERG and the VEP are also sub-
ject to this form of attenuation.

Nonlinear distortion, on the other hand, differs
fundamentally from linear distortion. Nonlinearity
means that proportionality between input and out-
put does not hold for all signal amplitudes, for in-
stance, often for a large input signal the responses
do not grow any more (saturation). Therefore, in the
presence of nonlinearities, the superposition princi-
ple is not obeyed. In principle, all real systems are
subject to nonlinear distortion, saturation and
thresholds being the most frequent ones (although
modern electronic devices can approximate linearity
to a large degree). Nonlinearity is an inherent and
common property of biological systems. Although
the division is not absolute, for our purpose it is use-
ful to distinguish “essential” from “nonessential”
nonlinearities. For instance, logarithmic and expo-
nential functions as well as saturation are nonessen-
tial: the distortion is strongly dependent on the
strength (amplitude) of the phenomenon. If an in-
cremental or decremental signal 8 is made small
enough, the system may approach linear behavior
(because, e.g., log(l + 3) = 8). When the input sig-
nal is enlarged, quadratic and higher-order terms are
playing a role. Rectification, however, belongs to the
class of essential nonlinearities; in the ideal
case—no matter how small the input signal—the
system transmits only one polarity. This means the
introduction of significant quadratic and higher-or-
der terms. In reality, rectification will not always be
abrupt, i.e., it will not occur at a given break point,
but it will be a smooth transition over some small in-
terval and will—for certain small inputs—obey lin-
earity. Nevertheless, in VEP studies rectification can
exhibit astonishingly sharp discontinuities, as is
shown in Figure 29-6."? In this figure it is demon-
strated that even for modulations as small as 1.25%
of the average light intensity one still obtains a sec-
ond harmonic response (although with decreasing
relative amplitude). Because of the selectivity of the
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diffusing screen,; two eyes,; 200 asb.
stimulus 2.5% 125% 0.625 %
A N faa OV
94 c¢/s 25uv 1.25 yv 0.625 pv
757% 5% 1.257%
~_ N
4.7 c/s 7.5uv sy 1.25 uv
FIG 29-6.

Occipital VEPs to sinusoidally modulated light at 4.7 and 9.4
Hz. The sinusoidal responses at 9.4 Hz are strictly propor-
tional to modulation depth (note the changing amplification
factor). At 4.7 Hz sinusoidal second-harmonic responses
can be recorded down to 1.25%, although less than propor-
tionally. (From Spekreijse H, van der Tweel LH: Proc Kon
Ned Akad van Wetensch 1972; 75:77—105. Used by per-
mission.)

responses to sinusoidally modulated light, as shown
in Figure 29-3, rectification expresses itself espe-
cially at 5-Hz stimulation; the second harmonic is
then 10 Hz, just at the maximum of the response
characteristic. In fact, at stimulation with 10 Hz the
response itself is to a high degree sinusoidal. With
respect to rectification, this has been demonstrated
in the ganglion cells of the goldfish.'® It must be
noted that distortions caused by rectifiers and by
saturation are usually frequency independent. This
type of distortion is called static, and such nonlinear
elements are called static nonlinearities, in contrast
to elements whose parameters would change with
frequency, which exhibit dynamic nonlinearities. Ad-
aptation belongs to the last category.

A consequence of nonlinearity in general is that
the response to a combination of harmonic functions
will contain new nonharmonic frequencies. For ex-
ample, if two frequencies f; and f, are presented and
there is a quadratic term in the nonlinearity, the fre-
quencies 2f, 2f,, f; + f,, and f; — f, will also appear
in the output. In fact such a property has been used

in visual studies to analyze the system, especially if
rectification could be expected.

It is interesting to realize, with regard to the
above considerations, that we do not appear to be
aware of the inherent logarithmicity of the intens-
ity transformations within our own visual system.
Neither do we notice the distortions of consider-
able intensity that usually occur in black and white
photographs. In hearing, however, even small non-
linearities in the chain of sound transformations may
be intolerable. They can add “extraneous” and dis-
turbing frequencies: hi-fi was not invented for noth-
ing! On the other hand, the visual system is very
sensitive to linear distortion that introduces phase
shifts in an image. Figure 29-7,A shows two of the
bars of a medium-contrast square wave grating on

FIG 29-7.

Two cycles of a square wave pattern (A) generated on a
cathode ray tube. B, drastic phase shifting has been per-
formed without affecting the amplitudes of the Fourier com-
ponents. The generating signals are displayed at the bottom
of the patterns. (From Van der Tweel LH: In Spekreijse H,
van der Tweel TH (eds). Spatial Contrast. Amsterdam,
Elsevier Science Publishers, 1977, pp 9—12. Used by per-
mission.)



an oscillograph screen.’® The white lines at the bot-
tom represent the screen luminance. As will be de-
scribed in the following chapter, the generating sig-
nal of the grating can be resolved into or
synthesized from a number of sinusoids, each repre-
senting a certain (harmonic) spatial frequency with
specific amplitude and phase. The phase relation-
ship of the composing frequencies determines the
exact shape of the grating. By electronic means it is
possible to shift the relative phases without affecting
the amplitudes. As can be seen, the appearance of
the grid changes dramatically by such a procedure
(Fig 29-7,B).

Again in contrast to the behavior of the visual sys-
tem, hearing is very tolerant of phase distortion, in
any case for periodic signals (Helmholtz’s rule). If
the two generating wave forms of Figure 29-7 are
played into a loudspeaker at, e.g., 300 Hz, A and B
sound identical because the same harmonics are
present in the same relative amplitudes.

FOURIER ANALYSIS

In 1807 Fourier (whose portrait is shown in Fig
29-8) submitted his epoch-making manuscript on
heat conduction to the Institut de France for publica-
tion, but it was not until 1822 that his book Théorie
Analytique de la Chaleur appeared.®

In this book one of the most fundamental theo-
rems of physics was developed. According to Fouri-
er’s theory, every periodic function can be decom-
posed into or synthesized from an (in principle)
infinite number of harmonic functions. The lowest
frequency is the inverse of the fundamental period,
and all other frequencies are multiples thereof. In
addition, there is a term representing the average
level of the function. The lowest frequency is also
called the fundamental or first harmonic, and all others
form the higher harmonics. Their various amplitudes
and phases are such that, when added together,
they reproduce the shape of the original function.

Fourier's formula for periodic time functions
reads as follows:

F(t) = a2 + . (a, cos 2mnft + )
n=1

b,, sin 2mnft)

where F(t) is a periodic function with the period T
and a, is a constant that represents twice the mean
of the function, also conventionally (and sloppily)
called the DC-term or, when light is considered, the
average illumination.

The frequency f (in hertz) is the inverse of T in
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Portrait of Joseph Fourier, lithograph. (Courtesy of the Mu-
seum Boerhaave, Leyden, The Netherlands.) The text be-
low reads: “Membre de la Légion d’honneur, etc. Né a Aux-
erre, le 21 Mars 1768, élu en 1817 et Sécretaire perpétuel
pour les sciences mathématiques en 1822." Translated:
“Member Legion of Honor, born Auxerre, France, March 21,
1768, elected in 1817 and Permanent Secretary for Mathe-
matical Sciences in 1822.”

seconds. If n = 2, 3, 4, etc., one speaks of the sec-
ond, third, fourth, etc., harmonic. Often the sine
and cosine terms are taken together:

F(t) = Agl2 + D A, cos Qunft + @) (3)

n=1

where A, = ay, A%, = a%, + b*,, and tan ® = b_/a,,.

If distance (x) is the variable, then we use P in-
stead of T: f = 1/P. For spatial periodic phenomena
in vision, spatial frequency is given in cycles per de-
gree and period in visual angle (degree). The terms
a, and b, can be respectively computed from the
equations

+T/2
a, =T - f F(t) cos 2mnftdt @)

-T2
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and

+T/2
by = 2T - f F(t) sin 2mnftdt (5)

=T/2

For computational reasons harmonic functions are
often displayed in complex notation as

C,, exp (jn{dt), with j being the square root of —1 and
Q, 2zf. This is identical with the sin-cos treatment
because exp(jn{lt) = cosnQt + j sin nQt.

Standard Periodic Signals

The scope of Fourier analysis can best be under-
stood by considering the analysis of simple periodic
functions like a square wave. Its components can be
easily calculated (Fig 29-9). Note that the funda-
mental has an amplitude (4/7) that exceeds that of
the square wave itself. As the third and a few more
of the harmonics are added, the synthesized shape
approaches the square pattern more and more.
There remains, however, a narrowing overshoot of
about 18% that shifts toward the steep flanks of the
square wave as more and more harmonics are in-
cluded; this is called Gibbs" phenomenon.

Another important standard signal is that formed
by periodic impulses. Theoretically the impulse (or
3-) function is by no means simple, but for the
present purpose, the following explanation will suf-
fice. It is supposed that each impulse is infinitely
short and infinitely high. For instance, electrical cur-
rent impulses can be given with diminishing dura-
tion 8t and increasing strength i in order to keep the
total charge per impulse constant. This total is nor-

FIG 29-9.

malized to unity, and the mean charge (dc or zero-
frequency component) becomes then 1/T; light
flashes can be treated in a similar way. The Fourier
spectrum of these repetitive impulses consists of
equally spaced spectral lines of constant amplitude
at frequencies f, 2f, 3f, etc. These are again impulse
functions, but on a frequency axis (Fig 29-10,A), the
amplitudes are 2/T. Since the average of periodic
unit impulses is by definition 1/T, all sinusoidal com-
ponents extend into the negative part of the ampli-
tude axis (Fig 29-10,B). At present, comparatively
simple computer programs are available that easily
perform on-line Fourier analysis of any signal, peri-
odic or not, so quickly that the calculations seem in-
stantaneous. Note that the Fourier analysis of a non-
periodic signal is technically performed as if the
analyzed interval is part of one period of a repeti-
tive signal! This period should be chosen with due
care.

The Fourier Integral

Theoretically, the Fourier series represents or re-
produces a periodic function that continues forever. In
practice this can never be achieved, although a suffi-
ciently long interval may be considered to approach
the ideal situation. For single events or transients,
i.e., signals of the “one-in-a-lifetime” sort, the dis-
crete sum X is substituted by an integral. Figure
29-11 gives an example to better understand the
meaning of this extrapolation. In Figure 29-11, we
start with the presentation of a square wave with its
Fourier line spectrum as was treated before in Figure
29-9. Subsequently, one period of this square wave
is isolated and repeated with progressively longer
periods. The spectral representation for the signals

The first three harmonics of a square wave and their sum (dashed line). The amplitude of the fundamental exceeds that of the
square wave. The overshoot does not disappear but becomes narrower when more frequencies are included.
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A, Fourier spectrum of periodic impulses normalized to V - 8t = 1. All amplitudes are 2/T; “DC” level, 1/T. Note that the im-
pulses in the time domain have the dimension volt - seconds and not volt. B, periodic impulse functions (period T) as they are
built up from cosine waves of frequencies n/T (“DC” level, 1/T). The virtual modulation depth of all components is 200%.

with lengthened periods is indicated in Figure
29-11. In accordance with the increase in period T,
the fundamental frequency 1/T decreases, which re-
sults in more closely spaced spectral lines.

If this procedure were to be continued (i.e., is ex-
trapolated to an infinitely long interval), the spectral
lines would become infinite in number and therefore
approach a continuum, at which moment they rep-
resent the Fourier transform of a single event; the
Fourier series (the line spectrum of Equation 3) has
become the Fourier integral:

Ft) = 12w - [ AQ) exp jotag) ©)

—o0

with Q = 27f and f the frequency. At the same time
this forms the (nonnormalized) envelope of the
former line spectra.

Especially revealing is the case of a single im-
pulse. If the procedure just described is applied to
the case of Figure 29-10,A, extrapolating to a single
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FIG 29-11.

A square wave (A) of period T is dissected and presented
with increasing intervals: 2T (B), . . ., infinity (C). D, the
original line spectrum at f = 1/T, 1/37, . . . . etc., is filled up
at increasing periods until the Fourier integral is approached
(continuous curve). All spectra are normalized.

impulse, the continuous spectrum that results exhib-
its a constant amplitude at all frequencies. All com-
posing harmonic functions reach maximal ampli-
tudes at the moment of the occurrence of the
impulse (see also Fig 29-10B). Therefore they are

represented by cosine functions at + = 0. Even
though their relative amplitudes will be (infinitely)
small, they will add significantly at time zero and
nowhere else.

Test Signals

In theory, the characteristics of a linear system
can be determined from its response to nearly any
transient signal; the transfer function follows from
the ratios of the amplitudes of each component,
which are obtained by Fourier analysis of the input
and output signals. In practice, impulses and step
functions are usually preferred as test signals. The
impulse function is a natural choice because of its
constant amplitude spectrum and well-defined
phase spectrum. All constituting frequencies have
an equally large, although vanishing, small maxi-
mum at t = 0 (A cos 2mft). Because of this equal am-
plitude spectrum the Fourier coefficients of the re-
sponse directly yield the transfer function.

The response to a unit step function, i.e., the inte-
gral of the impulse function, can also fully define a
system. Step functions are typically useful in slow
systems because their low-frequency content is high.
Another technique is to directly determine the fre-
quency response with a close enough series of sine
waves of different frequencies. In vision research
nonlinearities of the saturation type should also be
considered; when one wants to avoid them, either
weak incremental or decremental flashes (sudden
decreases of a certain luminance) with long enough
pauses may be employed, or sinusoidal modulation
with restricted modulation depth can be used to
probe the frequency range of interest. In principle,
the two methods will be just as time-consuming to
arrive at equally reliable results. If one wants to
study nonlinearities, sinusoidal modulation will of-
ten be preferable above strong flashes because dis-
tortions of the sinusoidal shape are easily detected.
Moreover, the adaptation state of the eye is well de-
fined. Which of these techniques is to be preferred
depends upon the question at hand and the system
to be analyzed.

Domains

Notwithstanding the fact that Fourier analysis is
mathematically a straightforward procedure, con-
ceptually it is by no means simple. As previously
mentioned, a variable quantity (e.g., luminance) that
is a function of time or space can equally well be



represented by means of its Fourier transform as a
function of frequency. Although probably superflu-
ous, it must be stressed that in the frequency do-
main “time” or “space” have themselves disap-
peared as a dimension.

An example from acoustics is probably the most
revealing: if we were to perform Fourier analysis on
a symphony of Mozart of, say, 30 minutes, we
would obtain a fundamental frequency of 1/1800 Hz.
If the frequencies present in the music extend to 20
kHz, there will be no less than 3.6 X 10 lines in the
amplitude spectrum and as many points in the
phase spectrum. The original representation of the phys-
ical phenomenon is replaced by a set of numbers, and time
itself is lost. These numbers, if used to code corre-
sponding physical generators (including phase infor-
mation), would allow one to reproduce the original
phenomenon. (Note: In a recent lecture, Stan Klein
has advanced the idea that a musical score can be
considered a Fourier representation avant la lettre.)

Our auditory system indeed allows a musical per-
son to extract separate pitches from a complex
sound, apparently performing some kind of Fourier
analysis {Ohm's acoustical law). In agreement with
this, a sound wave is in general perceived as an en-
tity, and no individual pressure vibrations are
heard. Of course, if a really simple form of Fourier
analysis were being performed by the ear, we could
only “hear” the symphony after it has been played,
and it would be just the same whether played for-
ward or backward. In reality, the ear performs a sort
of running frequency analysis with a sliding time
window of approximately 50 ms, and in this way
there is both frequency analysis and flow of time.

Theoretically the duality of the frequency and
space domains applies in a similar way to the visual
scene as to sound waves. However, in contrast to
the perceived uniqueness of a sound wave as de-
scribed above, each and every element of a grating is
always perceived as a distinct entity, even at levels
approaching threshold. Therefore the number of pe-
riods of a grating plays a much less important role in
perception than do the number of oscillations in au-
dition.”

There have been suggestions that for certain vi-
sual tasks such as recognition of blurred faces the vi-
sual system would employ a kind of piecemeal Fou-
rier analysis because this would be technically
advantageous. From the above exposition it should
be evident that the representations in time or space
carry the same information as those in the frequency
domain. Both representations will therefore need

Analytical Techniques 241

the same amount of computation, although of
course the physical or/and anatomical properties of
the brain may confer practical advantages to one or
the other modes.

Practical Considerations on Using Fourier Analysis

In practice, a recorded response will always be re-
stricted to a certain duration T or, in space, to a cer-
tain restricted region S. In the execution of a Fourier
transform, however, the phenomenon is usually in-
terpreted as periodic in T or S, as was mentioned be-
fore. Therefore the Fourier transform will not be
continuous but display a discrete although dense
spectrum with line distances of 1/T or 1/S. In case of
repetitive stimulation this is evident: if an ERG or a
VEP is presented for 0.5 seconds, the lowest mean-
ingful frequency will be 2 Hz, and harmonics will
also occur in multiples of 2 Hz. Although there are
programs that will enable a higher resolution by ar-
tificially extending the time interval being analyzed,
no information is gained by this. If a frequency spec-
trum is to be computed from an averaged signal, it
makes no sense to extend the analyzed interval be-
yond that section of the recording that can be con-
sidered to exceed the noise. In practice, such a sec-
tion will be extended to a longer analysis period to
obtain a dense enough spectrum.

An important consideration is that periodicity can
only be an idealization in practice. One must realize
that in reality a finite number of periods is always
present; time or space will be the restricting factor.
This means in Fourier terms that the theoretical dis-
crete lines of exact periodicity will broaden: the spec-
trum is continuous. In Figure 29-12 the effect on the
Fourier spectrum of restricting the number of peri-
ods of a square wave is demonstrated. An important
rule of thumb is that the width of the spectrum &f
around the center frequency f multiplied by the
number of periods N is approximately constant, thus

5 N =K. )

The spectral lines of higher harmonics are subject to
the same absolute widening, i.e., 8f. This is of special
concern for gratings because even if the number of
periods in the optical stimulus is large, the effective
number of periods on the retina will be different for
various spatial frequencies. As a consequence, the
effective bandwidth will be also different for differ-
ent frequencies. Another complicating factor is due
to eccentricity effects: along the bars of a centrally
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A, the line spectrum of an infinite square wave. B, spectrum of two periods of the same. C, spectrum of one period, equal to

11 D (Spectra normalized).

presented grating the effective length will be less for
fine gratings than for coarse ones. The implications
of all this are difficult to oversee and will certainly
affect the experiments in different ways. For a sys-
tem performing Fourier analysis, discrimination of
periodicity or frequency will be impaired if only one
or a few periods are present due to the broad max-
ima in the Fourier transform. This is easily demon-
strated in hearing: if one or a few cycles of a sine
wave are presented to the ear, a transient is heard
with very little pitch. However, the fact that this ef-
fect has no equivalent in spatial vision suggests that
vision does not primarily rely on harmonic analysis.
We discuss this question in the next section.

Real signals also deviate from ideal ones in other
ways. For instance, neither strict periodicity nor con-
stant amplitude are really achieved in practice, al-
though in our case deviations will be mostly negligi-
ble. More important is that in recording VEPs and

ERGs people blink, move their eyes, and shift their
attention; therefore even for an ideal stimulus, VEPs
will exhibit latency jitter and fluctuations of ampli-
tude. Attention to this will be paid when discussing
averaging, but here it can be said that in principle
fluctuations will also influence the initial Fourier line
spectrum of signals that are in origin periodic.

Although the concept of noise will be treated ex-
tensively later, one aspect deserves attention within
this framework: white noise is defined by its Fourier
spectrum as consisting of a continuum of frequen-
cies with constant amplitude. The only difference
between this noise spectrum and that of the impulse
function is found in their phase spectra. For noise,
phases are distributed at random, instead of being
equal (cosine functions) at a prescribed time, as is
the case for an impulse function. This again demon-
strates the importance of phase, which is of such
special significance in the visual world.



Just as in the real world the width of an impulse
function can not be reduced infinitely, similarly the
frequency spectrum of noise will be restricted at the
high-frequency end.

SOME ASPECTS OF SPATIAL FOURIER
ANALYSIS

Linearity

All optical systems, contrary to physiological
ones, are linear in so far as the relative light distribu-
tion of an optical image is independent of intensity.
However, it is a misunderstanding to think that op-
tical systems are linear in their reproduction of im-
ages. For example, if a sinusoidal grid is imaged
through a simple lens, the image may expand to-
ward the edges and introduce new frequencies in
the Fourier spectrum. Only in well-corrected optical
systems do harmonic functions retain their harmonic
character.

Time vs. Space

There is an essential difference between space
and time phenomena: time has an inherent direc-
tion, whereas space does not. Therefore, smoothing
in time is always accompanied by phase shifts,
whereas smoothing in space will generally be per-
formed without phase distortion. Actually the mini-
mum-phase rule is a consequence of causality. So-
called phase-free filtering has recently been
developed, but it can only be performed by com-
puter or by reversing the playback of a tape.'” Be-
cause the signal is processed artificially, the result is
not anymore restricted to the past; it may be looking
into the “future” i.e., causality can be violated: the
“response” can precede the stimulus. Figure 29-13
gives a schematic explanation of elementary phase-
free low-pass filtering.'® In modern practice filtering
is mostly performed digitally but digitally does not
necessarily imply “phase-free.” In principle time re-
versal is then an essential condition and therefore
physical laws are no longer valid. In the figure the
signal is filtered twice, once in the normal direction
and once backward. The reversed result of the latter
is then added to the first. One can see that the result
spreads from +® to —o, which makes estimation of
latencies dubious. This in contrast to real-time low-
pass filtering when, in principle, the start of a tran-
sient can always be found (in the noiseless case),
even if more filtering stages are present. On the
other hand, peak latencies will generally be much
more reliable with phase-free filtering, which is es-
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FIG 29-13.

Principle of phase-free filtering. A, a (voltage) impulse func-
tion (A-function). B, the circuit—a simple RC network
through which it is passed. C, the resulting output. D shows
a square pulse (full line), and dashed lines indicate the out-
put after filtering. In a computer or tape the memory can
contain all values from —t to +t, where t is a large number,
so the filter can be made to act upon the signal not only in
“real time” but also in the future! The mathematical effect of
this is shown in E for an impulse response and in F for a
square pulse. The dashed lines in F show the operation in
the “forward” mode, and the dash-and-dotted lines indicate
the reverse operation. The resulting (normalized) output is
shown by the full line. The result may be pretty, and the
peaks may not be “displaced,” but the time of origin of the
response is lost. (From Van der Tweel LH, Estévez O,
Strackee J: Measurement of evoked potentials, in Barber C
(ed): Evoked Potentials. Lancaster, England MTP Press,
Ltd, 1980, pp 19—41. Used by permission.)
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pecially advantageous for high-pass filtering of re-
petitive signals.

In space the situation is different. Often blurring
will be more or less circular symmetrical; with mod-
ern compound lenses, more complicated defocused
patterns may be produced. Most optical systems can
be adequately characterized by either their point or
their line spread function. The line spread function
has much in common with the impulse function in
time. Just as the impulse response of a filter gives
the frequency response, the Fourier transform of the
line spread function directly gives the optical trans-
fer function. The line spread function is very often
symmetrical due to the already mentioned equiva-
lency of right and left in space. In optical systems
that are not well corrected and also in vision, both
point and line spread functions will depend on ec-
centricity. Moreover, in general, line spread func-
tions should be determined with line elements that
are not too long.

A fact that deserves special attention in applying
spatial Fourier techniques is that of the axial align-
ment of object and image. This alignment has to be
accurate; if not, linear phase shifts will occur. For in-
stance, a misalignment of 1 degree will give a phase
shift of 4 x 360 degrees for spatial frequencies of 4
cycles per degree (period of 15 minutes) etc., be-
cause distance is translated in phase, including whole
periods.

Spatial Frequency

Fourier theory is obviously also valid in space:
any distribution of light can theoretically be obtained
by a composition of spatial harmonic functions.
However, whereas Fourier analysis in time is
straightforward, the two dimensionality of space re-
quires more complicated techniques and raises its
own questions when applied to the study of the vi-
sual system. The most fundamental problem arises
when light distributions are to be expressed in terms
of their Fourier spatial harmonic content; it is due to
the nonexistence of negative light. Consider the case
of a 100% contrast bar pattern (black and white): ac-
cording to our discussion in the section “Standard
Periodic Signals,” the fundamental exceeds in ampli-
tude that of the original light distribution, which
means that this “component” would go negative!

For an electrical signal there are no such problems
because negative and positive are symmetrical. Neu-
ral processes also permit encoding of negativity, and
therefore in principle Fourier processing of neural
signals would be feasible—assuming that the aver-

age can also be properly encoded. On the other
hand, there being no negative light, a given light
distribution cannot in general be synthesized from
physical harmonic gratings.

Fourier analysis of one-dimensional patterns, for
instance, square or triangular grids, is straightfor-
ward; the extension along the elements is in princi-
ple infinite, but the resultant normalized Fourier
spectrum will not change if shorter elements are em-
ployed. In experiments with grids, the length of the
grid elements may influence the amplitude of VEPs
or as such the threshold. If we take as an example a
square grid with a contrast of A% and a period
(twice the bar width) of X degrees, this will be rep-
resented by the average level (luminance) and fre-
quencies of (2n + 1) - 1/X c/degree with respective
amplitudes of 4A/w, 4A/3m, etc. It is interesting to
note that the eccentricity effect will influence the
harmonics differently. As far as the authors know,
no systematic research has been performed on this
matter.

Note that, depending on the sharpness of the
bars, many “frequencies” are present in this repre-
sentation. In this respect, “bar width” is a simpler
characterization of a square grid than is spatial fre-
quency. “Frequency” can better be reserved for sinu-
soidal gratings.

Checkerboards and Fourier Analysis

To understand the meaning of Fourier analysis of
two-dimensional figures, namely, that of the check-
erboards that are so often used in VEP research, con-
sider in Figure 29-14,A the heavy arrowed lines.'*
The mean luminance along these lines is then half
that of the white squares. Therefore there is no peri-
odicity perpendicular to these lines in the sense of
Fourier analysis, i.e., no spatial frequency of 1/2a
(Figure 29-14,A). For the tilted rays of Figure
29-14,B, alternate diagonals fall in the black or in
the white fields, and thus the first true Fourier com-
ponents are at 45 and 135 degrees. The profile is per-
pendicular to the diagonals and is triangular with
identical maximum contrast as that of the checker-
board elements. The period P in this direction is
equal to a\/i; the spatial frequencies belonging to
this triangular profile are therefore the inverse of
this and are subsequently P/3, P/5, etc. The ampli-
tudes will be 8/m?, and respectively 1/9, 1/25, etc.,
times this. All the above applies for both diagonal
directions. At the position of Figure 29-14,C the in-
tegrated contrast will be zero again. The orientation
selectivity will depend on the number of checks in-
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The integrated luminance along the elements of a checkerboard (of 100% contrast, i.e., black and white
tions. A, in the horizontal and vertical directions there is no variation. Th
of 1/2a. B, diagonally, a triangular distribution with the original contr
present: 1/2a - \/§ C, In this direction and in its counterpart, again, n
and the contrast is reduced to 1/3. Four equivalent directions exist. (Fr
thalmol Proc Ser 1983; 37:439—452. Used by permission.)

) in some main direc-
erefore there is no component with a spatial frequency
ast is obtained. This forms the first spatial frequency
0 net result is obtained: D, two of three checks cancel,
om Van der Tweel LH, Estévez O, Pijn JPM: Doc Oph-
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cluded; for large numbers orientation selectivity will
be very sharp. For the orientation in Figure
29-14,D, by the same reasoning a triangular grid
will be produced with a contrast of ¥ and a spatial
frequency 1/2a - \/ﬁ Due to the symmetry of the
checkerboard there are now four identical orienta-
tions. Note that there is no harmonic relation anymore be-
tween the main components. Therefore one can never
speak of the fundamental of a checkerboard, and
analysis and synthesis is by no means as simple as
for a bar pattern. As in the case of bars, the only un-
ambiguous definition of a checkerboard, and also
the simplest, is by the size of its elements.

Receptive Fields

There is a considerable amount of literature about
receptive fields and their representation in the fre-
quency domain.* As long as one accepts linearity,
the two representations are perfectly equivalent. For
not too complicated receptive fields, the representa-
tion in the frequency domain is necessarily broad be-
cause the lowest frequency has to fit more or less the
field size and, as we have seen, the Fourier trans-
form of one single period has a very broad represen-
tation. For receptive fields with straight edges the
transform remains rather elementary with equidis-
tant zeros. Circular fields are much more compli-
cated in this context, however. For instance, no har-
monic relations exist anymore between zeros or
maxima.

It is of course possible to imagine receptive field
structures, including inhibitory zones, that would
provide sharper frequency selectivity. A discussion
of these problems is beyond the scope of this chap-
ter, but it should be understood that the mathemati-
cal background necessary to treat the “receptive
field” concept in Fourier terms is much more compli-
cated than is often appreciated.

CORRELATION TECHNIQUES, NOISE,
AND POWER SPECTRUM

Autocorrelation

Autocorrelation and cross-correlation functions
are of great help in defining and understanding lin-
ear (and also certain classes of nonlinear) systems,
as well as in performing system analysis. We shall
treat functions of time as an example, but our dis-
cussion is equally valid for functions of variables
with other dimensions.

The definition of the autocorrelation function R(t)
of f(t) is as follows:

+T
R(x) = 12T - f A — Tyt ®)

-T

with T going to infinity (Fig 29-15).
If f(t) = A cos 2nft + ®), it is easily calculated
that

R(t) = A?%2 - cos 2mfr 9)

(see Fig 29-16).

Note that 7 is a time lag or time difference and
must not be confused with time itself: the autocorre-
lation function is not a process in time but a purely
mathematical construct. For 7 = 0 the autocorrela-
tion function is always maximal because it is then
exactly the integrated square of f(t). R(0) is conven-
tionally normalized to 1. Another property of this
function is that R(t) = R(—7), that is to say, R(7) is
symmetrical around the origin. This symmetry cor-
responds with the loss of phase information for har-
monic functions. In figure 29-16 some examples are
given of autocorrelation functions of common sig-
nals.

A
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FIG 29-15.

Principle of calculating the autocorrelation function. The sig-
nal (A), filtered Gaussian noise, is multiplied with a copy of
itself (B), but shifted with a (discrete) lag 7. C shows the
outcome of the multiplication. The values at all sampling
points are added. The result is point 7,,, of D, where the total
function with m ranging from —« to +« is presented.
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A, autocorrelation functions of A cos (2nft + &). B, a
square wave. C, one-stage low-pass filtered noise with the
time constant t. = RC.

Gaussian Noise

The concept of autocorrelation is especially useful
to define noise. An important case is that of white
noise; this is a signal whose autocorrelation function
is an impulse. Only for the delay T = 0 is there a net
value, normalized to 1; everywhere else it ap-
proaches 0. This definition in fact formalizes the in-
herent unpredictability that characterizes noise. In
practice, the frequency band of the noise will be al-
ways restricted; therefore the autocorrelation func-
tion will be a broadened impulse function, as is ex-
emplified in Figure 29-16,C, where the auto-
correlation function of noise filtered by a one-RC
stage, low-pass filter is shown. The result is a sym-
metrical exponential.

We shall consider here only the most elementary
form of noise, i.e., noise with an amplitude distribu-
tion:
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P(x) = 1/s\/2 - exp (—x%25?) (10)

with P(x), the probability that amplitude x occurs,
obeying a Gaussian distribution function with stan-
dard deviation s.

If Gaussian “white” noise (i.e., noise with a flat
spectrum) is passed through a linear filter, we obtain
“colored” noise. An important property of gaussian
noise is that its amplitude distribution remains gaus-
sian after linear filtering, independent of the filter
characteristics.

With correlation techniques it could be proved
that often the alpha rhythm has the characteristics of
selectively filtered Gaussian noise. This is not only
of interest theoretically but also for techniques of
signal extraction. Moreover, the amplitude histo-
grams of samples of alpha rhythm often show close
resemblance to a Gaussian distribution.

Power

The power of an electrical signal is given by the
average of V?R. In ERG and VEP, however, the re-
sistances R are undefined and thus the powers are
also unknown. It is common practice in electrophys-
iology to ignore R and to express “power” as ampli-
tude squared of the Fourier components (in either
V2 or V3.

An important theorem in this respect is that of
Parseval, which states that the time average of the
square of a function F(t) with period T equals half
the sum of the squared amplitudes of its Fourier
components:

+T/2 oo
T - f P(t)dt = 1/4 - a + 12 - JA2 (1)
-T2 n=1

This result is obtained when we consider the Fourier
series representation of the function F(t) and the or-
thogonality property of harmonic functions, i.e., that
only integrals of the form

A A f cos 2mf,t - cos 2mftdt (12)

with m = n will contribute to the time average. In
this context orthogonality means that the normal-
ized integrated product of any two harmonic func-
tions with different frequencies, if sufficiently long,
will equal zero. The only terms that contribute to the
autocorrelation are then the squares of the ampli-
tudes at each frequency (see the previous section).
In the case of nonperiodic signals, e.g., noise or
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any transient, the discrete sum at the right side of
Equation 11 becomes also an integral (similar to
what was described in the section on the Fourier in-
tegral). SA,? will change into a continuous function
of frequency, i.e., A%(f). This is known as the
“power spectrum” of F(t).

Although we shall not go into detail considering
the physical and mathematical problems regarding
the representation of the (power) spectrum, some
remarks may be made: as was discussed before, the
natural restrictions to true periodicity mean that in
practice no Fourier spectrum will exhibit pure spec-
tral lines; therefore the energy or power will always
be distributed over a finite frequency band. As a
consequence, the power at an exact frequency will be
zero. The problem is circumvented by taking not
power but the power per infinitesimal frequency
range df, “power density”. Therefore instead of
“power spectrum,” the term power density spectrum is
also often used. Since power is additive, the total
power in the frequency domain is obtained by inte-
gration over the frequency range.

The advantage of power density (dimension V¥/Hz)
as a measure in the frequency domain, especially if
noise is involved, is found in the well-defined prop-
erties of power such as additivity. However, it must
be realized that power seems to have no specific
meaning as a measure of properties of electrophysi-
ological phenomena; in any case, ERGs and VEPs
are conventionally recorded as an amplitude func-
tion of time. This is one of the reasons why, if their
frequency spectrum is wanted, often it is not the
power spectrum that is given but the amplitude
spectrum. In recent publications the term “ampli-
tude density” is used analogously to power density
with the “dimension” V/\/Hz. This may be con-
fusing, however, because “amplitude” is not addi-
tive along the frequency axis. Only Gaussian noise
obeys strict rules; in other cases there will be ambi-

guity.

Cross-correlation and System Analysis

An important step in the analysis of systems can
be made by using the cross-correlation function R
(note we use the same symbol R as above) between
the output ¢ and the input f. This function is defined
by the formula

+T
R(r) = 12T - f gt — mydt (14)

-T

for T going to infinity. It expresses the relation be-
tween two (time) functions f and g in the same way
that the autocorrelation function expresses the rela-
tion of a function to itself. If the two functions f and
g have nothing in common, the result will be zero. If
they are identical, the cross-correlation function be-
comes the autocorrelation function defined before. A
common (hidden) signal embedded in two indepen-
dent sources of noise will emerge in the cross-corre-
lation function if a long enough sample can be pro-
cessed.

Cross-correlation is especially effective in identify-
ing transport delays between two signals: the cross-
correlation will exhibit a maximum at v = transport
delay. If both signals are subject to noise of different
origin, this influences only the normalized value of
the maximum and its statistical significance, but not
its delay. If, for instance, the EEGs from the two
hemispheres have a cross-correlation function differ-
ing from zero, it can be concluded that either one
hemisphere influences the other or both are acting
under a common influence. In the latter case there
may be zero delay (i.e., the cross-correlation func-
tion will show a maximum at 7 = 0). However, such
a maximum should in general be interpreted with
due caution because in all recordings electrical cross
talk can be expected. Even if the common (parasitic)
signal is at a very low level, a long enough recording
period may eventually produce a significant result at
7 = 0. Results with zero delay will have to be spe-
cially examined and the power spectra of the initial
signals taken into account. Cross-correlation func-
tions with a maximum different from v = 0 can in
general be considered trustworthy. Note that, as ob-
served before, the cross-correlation functions of any
two harmonic functions of different frequencies will
be zero due to the orthogonality principle.

An important application of the cross-correlation
function arises when white noise is used as an in-
put. When the input noise is correlated with the out-
put of the system, the result is identical to the im-
pulse response, and its Fourier transform directly
yields the transfer function of the system. The rea-
son is that both the impulse and white noise have
the same flat spectrum. The difference between the
impulse function and white noise is only found in
their respective phase spectra. However, the phase
shifts after transmission through the system are the
same for each separate frequency, whether the input
is noise or an impulse, and therefore, the results will
indeed be identical. Usually band-limited noise is
employed with a flat spectrum simulating white
noise in the region of interest. In case of noise-mod-



ulated light, the effective modulation depth (deter-
mined by the standard deviation of the noise signal)
is necessarily restricted to about 30%; otherwise
noise peaks will (too) often produce prolonged black
periods (virtual negativity of light).

The transfer function determined by this method
is equal to the product of all transfer functions of the
series of linear processes involved. It is fundamen-
tally impossible to separate or to identify, for in-
stance, low-pass and high-pass stages. This means
that, for example, in visual physiology distal and
proximal frequency-dependent processes (filters) as
identified by linear analysis cannot be separated —
neither can their sequence be determined.

The equality of the noise and impulse response
functions is only generally valid in linear systems.
Nonetheless, there is one important class of nonlin-
earities in which cross-correlation can be usefully ap-
plied: cross-correlating white noise input with the
output of a system with one static nonlinearity (i.e.,
a nonlinearity that is frequency independent like a
rectifier) yields the shape of the impulse response of
the totality of the linear processes involved. This is
due to the fundamental property of Gaussian noise,
described above, that its Gaussian character is re-
tained after linear filtering. Therefore, the input to
the nonlinearity is also Gaussian independent of the
linear distal filters mostly present. The only differ-
ence with the result in the absence of static nonlin-
earity is found in the absolute value of the cross-
correlation function, which depends on the charac-
teristics of the nonlinearity (Bussgang’s theorem®).
Together with other advanced techniques, this prop-
erty of Gaussian noise has been successfully em-
ployed in VEP studies to determine the transfer
functions of various stages in the system.!

In contrast, however, to the equivalent use of
noise and impulse functions in linear system analy-
sis, in nonlinear systems the response to an impulse
input, e.g., a flash, will in general not represent the
impulse response of the linear elements. Already the
reversing of the polarity of the impulse will give rise
to different results, which makes interpretation diffi-
cult if not impossible. For instance, if there is an
early nonlinearity like strong saturation, a “positive”
unit impulse will yield a different result from a “nega-
tive” one; these differences may become crucial when
the nonlinearity is interleaved with linear elements.

AVERAGING

Although Fourier analysis has become very popu-
lar in visual electrophysiology due to the wide avail-
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ability of simple programs and personal computers,
averaging can still be considered the method of
choice in recording weak responses. Averaging is
conceptually much simpler than Fourier analysis
and is, in principle, maximally effective in noise re-
duction.

The Stimulus for Averaging

Classic averaging is performed by synchronizing
the start of data collection with the stimulus and
measuring (digitally) the response at a number of
consecutive intervals that are then saved into a
buffer in the computer’s memory. The process is re-
peated, and in consecutive stimulus periods the am-
plitudes of corresponding samples are added by a
computer. The stimulus can be periodic or not, as
long as the period of interest is kept in synchrony
with the stimulus and does not exceed the shortest
stimulus interval. Averaging is in fact identical to
cross-correlating a signal (ERG or VEP) with a cho-
sen number of impulses of unit size. It is a linear
method and as such also subject to treatment by us-
ing Fourier theory. (Actually, periodic averaging is
equivalent to a filtering procedure that only allows
frequencies belonging to the fundamental period
and its harmonics to pass through while rejecting all
other frequencies; furthermore, the “filter sharp-
ness” of this process increases with the number of
responses recorded.)

The stimulus in the case of averaging should have
a stable amplitude and, in principle, should also be
periodic. Otherwise, dynamic interactions may be a
confounding factor. Strong adaptation effects have
been described by Jeffreys,® from which it also fol-
lows that for transient stimulation there is a lower
limit to the stimulation period.

Improving the Signal-Noise Ratio With Averaging

Averaging originally was based on the assump-
tion that responses are stable and noise reasonably
Gaussian. From this it follows that the signal-to-
noise improvement (expressed in power) is propor-
tional to the number of periods added. Because
VEPs are characterized by amplitude and shape
rather than by power, the rule of thumb is that noise
amplitude is reduced relative to the response by the
square root of n (the number of intervals added).

In relation to the above, there rises an important
question: What is the signal-to-noise ratio? In a strict
sense the signal-to-noise concept makes only sense
for two Gaussian processes, one of which is consid-
ered to be the “signal” and the other the “noise” and
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the other being the superposition of harmonic sig-
nals and noise. A requirement is then that figures of
signal-to-noise ratio be expressed per frequency
band because at some frequencies the signal may be
larger than the noise and at other frequencies this
may be the other way around. Especially in the case
of transient responses, the signal-to-noise concept
can be difficult to apply and can easily give rise to
ambiguities, for instance, when the frequency spec-
trum of the transient is very different from that of
the noise. Suitable filtering may reduce such prob-
lems.

When averaging, both the frequency spectrum of
the noise and the stimulus repetition rate may play
an important role. Often there is a strong alpha
rhythm of, say, 10 Hz with a high selectivity. If the
stimulus rate were to be 1, 2, 5, or 10 Hz, the effec-
tive noise would be relatively amplified depending
on the selectivity of the alpha process and the sweep
period chosen: the lower the rate, the lesser the en-
hancing. A signal-to-noise ratio calculated on the ba-
sis of total power would then be highly overesti-
mated, although the improvement will still go with
\/ﬁ. When the stimulus period is chosen such that
it just fits an odd multiple of half a period of the al-
pha frequency, the recording interval will fall be-
tween alternating polarities of the alpha rhythm. Be-
cause of this, the result will be much improved: the
effective signal-to-noise ratio is increased because
the alpha rhythm will tend to cancel in successive

sweeps.!!

Response Fluctuations

VEPs and ERGs are subject not only to noise con-
tamination but also to inherent fluctuations. There is
a fundamental difference between the disruptive ef-
fects of additive noise and those due to variability of
the response itself. If, as sometimes has been de-
scribed, response and noise interact, then simple
rules cannot be given. Theoretically there are two
main types of response irregularities: latency jitter
and amplitude fluctuations. Because their effects are
comparatively small in routine measurements, they
will only be treated briefly.

Latency jitter of the response or of parts of it will
lead to smoothing during averaging. Actually, time
jitter is the most effective low-pass filter that can be
physically realized. Techniques have been described
to implement adaptive filtering that counteracts
these smoothing effects.'” If the responses occur in
clusters with different latencies, interesting methods
exist to separate these clusters.® Analysis of conven-

tional pattern VEPs in our laboratory by using so-
phisticated filtering has shown, however, that even
near threshold the latency spread was not more than
a few milliseconds. Concerning amplitude fluctua-
tions, Dagnelie et al.® have found fluctuations on the
order of 25% for a 50% modulated, 20 Hz luminous
stimulus. In our own experience with recordings be-
tween 100 and 200 sweeps, reproducibility of pattern
responses is generally very good.

An instrumental artifact is caused by the property
that in certain TV stimulators the stimulus is not
synchronized with the TV frame rate in order to pre-
vent pickup from the mains or VEPs to TV flicker.8
Since mostly only the central part of the TV screen is
fixated (or as such has a dominant position), this
will cause jitter of the stimulus on the order of 20
ms, equivalent to low-pass filtering using a “square”
unit impulse response of 20-msec duration (in case
of 50 Hz mains). Although this is not unequivocally
translatable in a frequency cutoff, it means approxi-
mately an attenuation of 3 dB at a frequency of 22
Hz.

In some cases, one might wish to extract individ-
ual responses. Those interested in suitable tech-
niques, like a posteriori filtering, are referred to the
extensive literature covered and discussed by Lopes
da Silva.”

Practical Considerations on Averaging

In our type of experiments time is often at a pre-
mium. Therefore stimulus period and sweep time
should be strictly coupled so that there are no loose
periods in between. This self-evident facility is often
lacking in simple averagers, or no attention has been
paid to it in computer programs. In the case of pat-
tern reversal responses, it is advisable to record two
responses per sweep. This allows one to check the
symmetry of the stimulus while, at the same time, it
gives an impression of the stability of the experi-
mental situation. Early artifact rejection can also be
strongly recommended.

SYNCHRONOUS AMPLIFICATION

Related to cross-correlation and to Fourier analy-
sis is the technique of synchronous detection.
(Lock-in amplifiers are a technically different realiza-
tion of synchronous detection with the same advan-
tages and disadvantages.) This technique is espe-
cially useful when repetitive stimulation at higher
frequencies is employed: so-called steady-state ex-
periments. The principle of the method is multiplica-



tion of the signal that contains the expected periodic
response, with two harmonic functions of the same
frequency and 90 degrees phase shift, i.e., a sine
and a cosine. The outcome is smoothed (integrated)
over a chosen time, e.g., by a resistor-capacitor (RC)
filter, but separately for the sine and cosine. After
this, the square root of the sum of squares is taken
and recorded. For long RC times this approximates
performing Fourier analysis on one frequency only:
that of the fundamental of the stimulus. In other
words, one is computing the Fourier series’ coeffi-
cients a; and by, ‘and from these the amplitude A is
computed in real time. Note that any smoothing
should be done before squaring a and b. This opti-
mizes noise reduction. One can also obtain the (tan-
gent of the) phase by using tg® = b/a, although this
is not common practice.

In most commercial synchronous amplifiers the
multiplication is in fact replaced by synchronous rec-
tification (Figure 29-17). In this figure it is supposed
that the stimulus evokes a sinusoidal response that
is passed through a synchronized full-wave rectifier.
This is equivalent to alternately multiplying the sig-
nal by +1 and —1 during each half-period. In the
top half of the figure, the sign of the multiplier
changes when the sine wave crosses zero, and the
sum of the shaded areas is maximal. When the sign
change is delayed by 90 degrees (lower part), the net
result is zero. Other phases are usually encountered
in practice since there is no telling, a priori, the
phase angle (or delay) between stimulus and re-
sponse. Then the two channels will both record a re-
sponse of which the sizes will depend on that angle.
An estimate of the response amplitude, however, is
independent of the phase. The further procedure is
the same as described above for true multiplication.

An important consequence of using this tech-
nique is that not only will the fundamental compo-
nent of the response determine the result, but also
odd harmonics will because the multiplying function
itself contains these harmonics. Therefore, the re-
sults of synchronous amplification are only unam-
biguous when the response itself is nearly a sine
wave, as is generally the case at high stimulation fre-
quencies. It should be realized that this type of sim-
ple quantification is at the cost of losing all informa-
tion about possible components in the VEP.

Synchronous techniques are also treacherous at
low frequencies when the fundamental is not the
main contributor anymore (see the response at four
reversals per second in Fig 29-18); low-frequency
cutoff may even be suggested simply because the
period extends beyond the most prominent part of
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FIG 29-17.
Scheme of synchronous detection.

the response; in other words, the contribution of the
fundamental becomes smaller when the frequency is
lowered.

Note that synchronous detection is governed by
the stimulus interval and that with pattern reversal
the reversal rate is twice that of the luminance mod-
ulation of the elements. Therefore, the detection
procedure or the multiplication must be governed by
the second harmonic of the modulation frequency of
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Continuous recording with synchronous
detection of the amplitude (upper trace) and 3 4
phase (lower trace) of the response to a
reversing checkerboard at various 2
frequencies. Two successive averaged 1
evoked potentials at three frequencies are
inserted. From approximately 8 reversals per 1 -L e~ A > v 1 L L v
second on, the fundamental dominates. At 4 2 4 6 8 10 12 14 16 18 20 Hz

Hz the higher harmonics become stronger but
do not contribute to the synchronously
detected response, which contains mainly the
fundamental. Therefore, the smaller response
at low frequencies is an instrumental artifact.
However, latency determination by means of
phase shift as a function of frequency is still
valid. (From Van der Tweel LH, Estévez O,
Strackee J: Measurement of evoked
potentials, in Barber C (ed): Evoked
Potentials. Lancaster, England MTP Press,
Ltd, 1980, pp 19—-41. Used by permission.)

phase
360°

the two sets of elements. This is the reason why in
the literature the response is often characterized as
“second harmonic.” The term is not only confusing
but even wrong in the case of pure contrast re-
sponses because the response has evidently the
same frequency as the true stimulus, i.e., that of the
reversal itself. There is only sense in talking about
second harmonics of the modulation frequency if the
responses are governed mainly by luminance, as is
the case with large elements or probably in part of
the pattern ERGs.

The advantages of synchronous detection are
those of simplicity and the possibility of continuous
recording that they allow. The signal-to-noise im-
provement is dependent on the smoothing time con-
stant and can be arbitrarily large at the cost of time
resolution. This is sometimes expressed as equiva-
lent bandwidth. For a similar noise reduction the
consumption of time for averaging and synchronous
amplification is comparable. For automatic tracking
procedures, however, synchronous amplification is
indeed a very appropriate technique.

latency
125 msec

CONCLUSION

We remarked in the introduction about the need
to reconsider concepts such as “threshold.” The
point is that, even if signal-to-noise improvement
may proceed comparatively slowly, the only restric-
tion in improving the sensitivity of a recording is
that imposed by the endurance of the subject. In
practice, it has proved to be possible under favorable
conditions to measure VEPs to modulated light at
less than 5% of the psychophysical threshold.'* The
reason is that the computer memory by far exceeds
the integration time of flicker perception and also
the electrodes cover a much larger visual area than
contributes to sensation. In such situations, it will
depend on the patience of experimenter and subject
what can be considered a nonrecordable response. It
is clear that an unambiguous statement will be that
at a noise level of x uV no response could be re-
corded, but this does not give an indication whether
recording for a longer period would have yielded a
VEP or that a “hard” threshold has indeed been



passed, as is common with pattern evoked poten-
tials. Probably the earliest example demonstrating a
true electrophysiological threshold is the work of
Campbell and Maffei,> where the objective threshold
and the extrapolated electrophysiological one were
shown to coincide very well. It is therefore recom-
mended that the experimental technique used be
stated exactly in order to enable judgment by the
reader.

Whatever techniques are employed, Fourier the-
ory is as important for the quantification of the re-
sponses themselves as it is for the signal analytical
description of the stimulus-response relation. As
was already stated, linear system analysis is exhaus-
tive, and there remains only the question of choos-
ing the most practical solution. Nonlinear system
analysis has no general recipes, but there are groups
of systems, e.g., those with one static nonlinearity
that are accessible to systematic analysis. But also in
those cases Fourier stands central!
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