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Electro-oculography

Hansjoerg E. Kolder

CLINICAL ELECTRO-OCULOGRAPHY

Clinical electro-oculography (EOG) records the
voltage difference between the posterior pole of the
human eye and the cornea. The evidence from clini-
cal observations, animal experiments, and cellular
physiology is convincing that the retinal pigment ep-
ithelium is the major if not the sole origin of the
EOG. DuBois-Reymond®® first demonstrated this
potential in an animal eye over 140 years ago. The
phenomenon has variously been called Bestandpo-
tential, standing potential, resting potential, cor-
neoretinal potential, and corneofundal potential.
Marg'® reviewed the early development of the tech-
nique of recording eye movements by utilizing the
standing potential. Several books and reviews con-
tribute to an understanding of the history of EOG
and its clinical application 3 #4579 88, 119, 142
No attempt has been made in this chapter to provide
a comprehensive list of references, but a sufficiently
representative sample of the recent literature is in-
cluded.

PRINCIPLE OF INDIRECTLY RECORDING
THE ELECTRO-OCULOGRAM

The electrical potential generated within the eye is
distributed in the globe like in a volume conduc-
tor.'® The eye is surrounded by an electric field, the
strength of which is dependent on the electric im-
pedance of the periocular tissue. The potential mea-
sured anywhere in the electric field is proportional
to the dipole potential. EOG measures a potential in

9

the electric field surrounding the eye that is propor-
tional to the sum of all potential sources (generators)
and potential sinks within the eye. The EOG is a
mass response and provides only indirect and non-
specific evidence about the anatomical and physio-
logical substrate generating it.

Figure 39-1 schematically shows the principle of
recording the EOG. Two electrodes are placed on
the skin close to the medial and lateral canthi. A po-
tential difference is thus measured.

The potential will be made up of several compo-
nents, only one of which is due to the ocular dipole.
For example, slowly changing voltages at the elec-
trode-skin interface are to be expected.®® When the
eye moves, these other voltage/current sources
should be constant for the short time that is occu-
pied by the saccade. Therefore the eye movement
potential is determined by the amplitude of the eye
movement and the strength of the intraocular cur-
rent generator.

Since eye movements are completed in less than
500 ms, the polarization current is unlikely to
change significantly during that short time. The
EOG potential is then measured before and after an
eye movement. The difference between the poten-
tials in two eye positions is measured, recorded, and
StOred.ls' 16, 19, 34, 83, 95, 127, 137, 151

Nilsson and Andersson''? and Skoog'** have de-
veloped a method to record the EOG directly from
the eye. A nonpolarizing electrode is placed on the
cornea; no eye movements are required. The more
widely used indirect method of recording an EOG
with eye movements has the advantage of ease of

112
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Principle of indirectly recording the human EOG. Two electrodes are placed on the skin next to the canthi. The potential dif-

ference is measured between the two eye positions.

application of electrodes to the skin and less discom-
fort for the patient. The results of the directly and
indirectly recorded EOG are comparable.'*

The reliable and reproducible measurement of the
EOG depends on stable amplifiers to measure the
potential which is in the order of 1T mV. A differen-
tial input amplifier with 1 MOhm or higher input
impedance picks up the potential from skin elec-
trodes. A resistance between skin and electrode of
less than 5 kOhm is desirable. The frequency band
of the amplifier should extend from dc to 10 Hz, al-
though an ac amplifier with a long time constant (10
sec) is acceptable.

The following strategy ensures that the potential
difference is recorded when the eye position is sta-
ble. The electronic gate is opened 500 ms after a fix-
ation light has been activated to permit sufficient
time for the eye to fixate. A measurement of voltage
is made, and the amplifiers shorted. Thereafter, an-
other fixation light is activated and an eye move-
ment performed; 500 ms later the gate is opened
again, and the potential in this new position is mea-
sured and stored. The difference between the two
aforementioned potentials is recorded as the EOG.
Eye movements are repeated, e.g., every 10 sec-
onds, and the EOG can be plotted as a function of
time. Each potential difference from an eye move-
ment can be displayed on a strip chart recorder ad-
vancing 2 mm/min; this permits the identification of
incomplete eye movements or blink artifacts.
Present-day electronic equipment can be used to re-
ject extraneous potentials if they exceed a predeter-

mined value, e.g., +20% over the preceding poten-
tial. Instead of a continuous display these recording
systems store all potentials in memory or on disk; a
hard copy of the original record with electronic
purging of artifacts can be produced or further
mathematical analysis initiated.

The frequency with which eye movements are
replicated is determined by the resolution required
and by the cooperation of the patient, e.g., if the fast
oscillation of the EOG (see below) is investigated,
eye movements should be repeated every 5 or 10
seconds; one period of the fast oscillation lasts about
120 seconds. If the light peak-to-dark trough ratio is
of interest, eye movements may be repeated every
minute; the dark trough is normally separated by
about 15 minutes from the light peak. Frequent eye
movements fatigue patients, probably from insuffi-
cient time for blinking. Trains of eye movements,
e.g., ten eye movements rapidly repeated every
minute, may condition anticipation of the position of
a fixation light; the gating of the amplifier then be-
comes crucial. Inappropriate gating causes artifacts
that can be recognized by monitoring the signal be-
fore electronic manipulation.

EYE MOVEMENTS

Several methods have been employed for clinical
EOG tests.® 2% 66 84. 118, 143, 150 The angle for the eye
movements prescribed by fixation lights is often 30
degrees. The EOG potential is then large enough to
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FIG 39-2.

EOG used to monitor eye positions. The upper tracing on the left shows eye movements increasing in steps of 5 degrees; on
the right the eye movements increase proportionally to the sine of the angle. The lower tracing verifies the stability of the EOG:;
each eye movement over a varying angle is followed by an eye movement over a constant angle. The abscissa is divided into

30-second intervals, the ordinate into 50-pV increments.

be measured reliably, and the peripheral stimulation
of the fixation light is easily recognized because it
initiates a prompt saccade. The replication of eye
movements for EOG recordings is important. For as
long as eye movements are made over the same an-
gle, the measured potential difference between the
two eye positions is almost exclusively dependent
on the potential source for the EOG, disregarding
fast changes of the polarization current at the elec-
trodes. Precautions have to be taken in special situa-
tions, e.g., proptosis increases the absolute EOG
voltage®; myopia, when associated with peripheral
chorioretinal degeneratlon decreases the EOG re-
sponse to light.

If eye position or movement and derived parame-
ters like globe velocity and acceleration are to be re-
corded, the EOG should be frequently calibrated by
making standard eye movements because of slow
changes (over minutes) of the intraocular genera-
tors.

Figure 39-2 shows on the upper left a “staircase”
of eye movements over linearly increasing angles.
The right upper staircase depicts eye movements in-
creasing proportional to the sine of the angle. The
lower tracing graphs eye movements over a constant
angle of 30 degrees that were alternated with eye
movements over varying angles. This method pro-
vides a semicontinuous calibration for tests when
the EOG potential is critically used to monitor eye
position.

The relationship between the angle of eye move-
ment and EOG potential is not strictly linear. If an
accuracy in excess of 1 degree of arc is required for

recording eye movements, careful and repeated cali-
brations must be inserted.? *1- 113

LIGHT PEAK

The EOG was long thought to be invariant
(“standing potential”), although there were dissent-
ing voices.'" Over 30 years ago Kris® convincingly
demonstrated a slow increase of the EOG with adap-
tation to light and a decrease in dark. This observa-
tion was confirmed and expanded extensively.

Figure 39-3 depicts the EOG as a function of
time, first in dark, then in light. In the dark the EOG
reaches a steady state. The onset of light (400 lux at
the eve level) causes the EOG to increase; this is fol-
lowed by a return to its steady state with two peri-
ods of a slow oscillation. The period of the slow os-
cillation lasted 27 minutes in this test.

The amplitude of the slow oscillation of the EOG,
in particular, the first peak, is dependent on light in-
tensity.” 10 38 39, 62,86, 94,105, 146,152 Gince the work
of Arden and Kelsey’ it has been known that a qua-
silinear relationship exists between the EOG and log
luminance over approximately 3.5 log units. This de-
pendence of the EOG on light intensity includes
contributions from the scotopic system and the pho-
topic system, at least in their indirect effect on the
retinal pigment epithelium. When analyzing the
slow oscillation in detail by simulating its waveform
with a biological feedback model having at least
three components, the linear EOG parameters are
dependent on light intensity over 7 log units.®
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FIG 39-3.

EOG recorded with eye movements repeated every 10 seconds to demonstrate the slow oscillation. Dim red fixation lights
were 30 degrees apart. Following adaptation to dark, an incandescent light was turned on as marked on the top tracing. The
intensity of the illumination received at the eye level measured about 400 lux. The light source subtended 30 degrees. The
marks on the bottom tracing indicate 30-second intervals; 20 squares on the ordinate represent 1 mV.

The EOG is also dependent on the wavelength of
light falling in an eye,® ' '*32 and thus contribu-
tions from both the scotopic and photopic systems
can be demonstrated. In patients with congenital
achromatopsia the scotopic response of the EOG is
reduced and the light peak delayed, while the fast
oscillation remains intact."™ The response to red
light is subnormal, that to blue light normal.*' Sco-
topic saturation was tested in order to isolate the
contribution of cones to the EOG.> ¥

The EOG is a summed response originating in the
pigment epithelium. Both the peripheral and macu-
lar receptors are involved.? ** 13 Therefore, stimu-
lation of the total retina (“Ganzfeld”) is assumed to
optimize the EOG response.™

Numerous authors have reported normal
data for EOGs obtained under specified condi-
tions. |- 7 23, 60, 70, 74, 89, 92, 108, 110, 123, 169, 170,176 T}
interindividual variation exceeds the intraindividual
variation.”

The difficulty with recording the EOG is the slow

development of a response and the considerable
time needed to await a steady state.

Figure 39-4 is representative for an EOG re-
corded for 90 minutes. Eye movements were re-
peated every 10 seconds, and no sighal processing
was performed except zeroing the potential prior to
the eye movement. Twenty divisions on the ordi-
nate equal T mV, each division on the abscissa de-
notes 30 seconds, the event marker on the top indi-
cates when the incandescent light was turned on,
and the illumination received at eye level corre-
sponded to about 1,400 lux. The EOG stabilized in
dark except for a possible shallow minimum about
15 minutes prior to the light stimulus. Within the
first 2 minutes of light adaptation a decrease in the
EOG is observed that is followed by a “light peak”
8.5 minutes later. The EOG decreases thercafter and
reaches a trough in 13.5 minutes; a second light
peak occurs 27 minutes after the first light peak, i.e.,
the period of this slow oscillation is 27 minutes,
which gives a frequency of the slow oscillation of 2.2

e
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An EOG in response to light of approximately 1,400 lux at eye level illustrates an initial decrease followed by a “light peak.”




cycles per hour. The frequency of the fast oscillation
(part of it is recognizable as initial decrcase in the
EOG with light stimulation) is 28.5 cycles per hour.
The amplitude of subsequent peaks decreased, and
this suggests a damped oscillatory mechanism re-
sponsible for the EOG response to light.

RESPONSE PARAMETERS

Several parameters can be measured directly from
an EOG: the steady-state potential to which the
EOG returns following an oscillation, sometimes re-
ferred to as base potential; light peak potential, dark
trough potential; the ratio of light peak to dark
trough; the ratio of light peak to steady-state poten-
tial; the ratio of the first light peak to the second
light peak; the time to the first light peak, time to
the dark trough; duration of the period; and fre-
quency of the slow and fast oscillations. Parameters
derived from mathematical modeling®’ arc more
complex and have not been tested sufficiently in ret-
inal diseases.

Figure 39-5 exemplifies, with an original EOG
tracing and a schematic drawing, the parts of the
light response that are customarily measured and

on
off

T

15 min

Preperiod mean to
peak amplitude
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clinically used. For this particular recording the EOG
response was forced by repeated light and dark
phases. Of all the parameters listed, the ratio of light
peak to dark trough has found widest acceptance
since Arden et al.” suggested it. The rcason may be
quite pragmatic: irrespective of the level of preced-
ing light, the EOG will oscillate to a minimum dur-
ing a following adaptation to dark (“dark trough”).
Timed appropriately, e.g., not more than 15 minutes
after the beginning of dark adaptation, a light stimu-
lus will trigger the development of a light peak of
maximal or near maximal amplitude. This strategy
clicits an oscillation but utilizes only a fraction of the
time needed to await a steady state. The light peak-
to-dark trough ratio (Arden’s ratio) maximizes the
response, at least in most cases. It is possible that
more and differential diagnostically important infor-
mation from the EOG remains undetected by using
Arden’s abbreviated protocol.'>

MATHEMATICAL MODELS

To refine the evaluation of the EOG response
to light, physiological models have been pro-
g F 8 p
posed. el 63. 145, 149 6 model® assumes that the in-

oo
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FIG 39-5.

Slow oscillation of an EOG that is forced by light and dark phases each lasting 12.5 minutes. Parameters are indicated that

can be used to quantitate the EOG response.
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FIG 39-6.

Computer simulation of the human EOG in response to light. The dots indicate eye movements repeated every 10 seconds.
The solid curve was calculated by least-squares fit of a nine-parameter model, assuming the interaction of four mechanisms.

directly recorded response of the EOG is a compos-
ite of three or more mechanisms with feedback be-
tween them. A set of differential equations, one for
each mechanism, describes these interactions. The
solution is nonlinear and has nine parameters for
four mechanisms (Fig 39-6). Three of the parame-
ters are linear and have been correlated with the in-
tensity of the light over a range of 7 log units. The
model has been tested and predicts intraindividual
and interindividual variations well.*®> Because of the
iterative process needed to solve the equation, con-
siderable computer time was originally required,
and no recent attempts using fast computers for the
desirable, on-line analysis of the slow oscillation of
the EOG have been published.

A multivariant analysis of the factors age, sex, re-
fractive error, and visual acuity was applied to a
group of persons without known eye diseases.?' No
factor significantly correlated with the light peak-to-
dark trough ratio. Sevenly percent of the variance
observed could be accounted for by combining the
four factors mentioned.

SPECIAL RECORDING CONDITIONS

The clinical recording of the EOG is not strictly an
objective test of the function of the eye. The cooper-
ation of the patient is necessary to follow the fixation
lights. Direct recording of the EOG by means of a

nonpolarizing corneal contact lens electrode circum-
vents this disadvantage but still requires the cooper-
ation of the patient to tolerate the electrode on the
cornea. Patients with poor visual acuity can be asked
to make “maximal” horizontal eye movements; even
though this technique will not yield an EOG as a
function of a constant angular movement, it may be
useful as a relative measure of pigment epithelium
function. Infants have been tested by means of pas-
sive eye movements induced by the vestibular re-
flex.”' 17 Children from 5 years of age on can often
be motivated to cooperate with an EOG protocol. In
animal experiments the globe can be moved pas-
sively over the same angle, thus simulating an indi-
rectly recorded EOG. An analogous method has
been suggested for patients under general anesthe-
sia. As a rule patients with a visual acuity of 6/60 or
better, with best correction, are able to adequately
follow the fixation lights. Malingerers can easily sup-
press eye movements prescribed by fixation lights,
thereby rendering impossible the interpretation of
EOG test results. But the EOG can be recorded by
using an “optokinetic” (striped, rotating) drum as a
stimulus as described for small children®; the opto-
kinetically induced refixation movement is difficult
to suppress. Media opacifications dense enough to
reduce the visual acuity to less than 6/60 cause the
fixation to be uncertain; EOG test results are then
questionable. If one eye has adequate visual acuity
and no strabismus or only concomitant strabismus



exists, a useful EOG tracing can be expected from
the contralateral eye with opaque media. Light stim-
ulating one eye produces a low-amplitude EOG of
inverse polarity in the contralateral, occluded, or
diseased eye.?” ¥ 128. 164163 Thjg propagated poten-
tial may even simulate an attenuated EOG from an
anophthalmic socket.'"”

The circadian stability of the EOG is of impor-
tance when repeating tests at various times.® Long-
term continuous recording of the EOG is tiring;
therefore, few experiments have been reported that
cover 24 hours. In one such set of experiments, the
EOQG, in its steady state, proved to be stable and in-
dependent of the nocturnal decrease in body tem-
perature (i.e., having no circadian rhythm).” Other
experiments, conducted over shorter periods of
time, support the assumption of diurnal variations
of the light peak-to-dark trough ratio.' % 7 87

NON-PHOTIC STIMULI

Numerous nonphotic stimuli have been tested for
their effect on the EOG.* '* * The response to sub-
cutaneously injected adrenalin increases the EOG in
a dose-dependent manner; adrenalin does not elicit
an oscillatory response.®”> The influence of alco-
hol'® 77 and hypoxia”® '™ have been documented.
The effect of acetazolamine on the EOG has been re-
searched specifically with the aim to develop a test
of the function of the pigment epithelium, which is
independent of light stimuli. An injection of acet-
azolamide causes a dose-dependent decrease in the
EOG?" 7! 1% subsequent light stimulation evokes a
modified “light rise.” 1t is likely that acetazolamide
acts on the pigment epithelium of the ciliary body
and on the retinal pigment epithelium. Timolol, a
B-adrenergic antagonist, causes a similar decrease in
the EOG potential in the steady state.'® Hypertonic
solutions (e.g., 20% mannitol) injected intravenously
reduce the EOG in a dose dependent manner with-
out triggering a slow oscillation. The variance of the
EOG is less in response to hyperosmosis than to
variance of the light peak following stimulation with
light. This observation suggests that nonphotic stim-
ulation may provide a more sensitive test of the
function of the pigment epithelium than photic stim-
ulation does.” 19 174

SLOW OSCILLATION

The slow oscillation of the EOG®% 7% 86 88 57, 143,
147,135 myst be initiated by a mechanism that differs
from the interaction of photons with receptors in the
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outer segment. The latter interaction triggers the
components of the electroretinogram (ERG). A me-
diator (“light peak substance”) for the transmem-
brane potential changes in the pigment epithelium
has recently been reported.* Since the receptors are
surrounded by pigment epithelium and metaboli-
cally dependent on it, an interdependence is not
surprising, although the temporal relationship sug-
gests a “loose” coupling. The time during which the
slow oscillation returns to a steady state is too long
to be attributable to photopigment regeneration. Os-
cillatory, damped metabolic changes could be slow
but have not been reported from the eye to the ex-
tent suggested by the period of the slow oscillation
of the EOG. A slow oscillation develops also in re-
sponse to repeated short light and dark phases.
Indeed, an abbreviated slow oscillation (i.e., short-
ened period) can even be found in response to
a high-intensity photoflash.® '*® Experiments on
rabbits, with indirect recording of the EOG, re-
vealed an inverse correlation between systemic
blood pressure and the steady-state part of the
EOG.?? Similar observations were reported from the
perfused eye preparation.''! Metabolic or hemody-
namic changes are epiphenomena and need to be
correlated with potential changes across the pigment
epithelium.

The adduction of the site of origin of the EOG re-
quired animal experiments.” ¥ '* Numerous spe-
cies, from amphibians to mammals, show a slow in-
crease in the EOG in light and a decrease in dark.
Notable are experiments with rabbits,® since their
ocular vascular system depends mainly on the cho-
roid, and sheep,”® whose circulation closely resem-
bles that of humans. Transection of the optic nerve
proximal to the entrance of the central retinal artery
does not diminish the EOG response to light.*> 7®

Another significant step in elucidating the origin
of the EOG was provided from observations on iso-
lated, perfused eyes.?® "' Oxygen saturation,
pH, and flow have been identified as factors influ-
encing the EOG.

Intracellular placement of electrodes enabled the
recording of transmembrane potentials of pigment ep-
ithelial cells as well as active and passive ionic changes
during excitation.w' 73, 98, 100, 109, 116, 138, 139, 168, 172

The photoceptors are the primary site of the
transduction of the energy of photons into the phys-
iological response initiating the EOG. The pigment
epithelium has been proved to be the generator
source. Conduction of receptor excitation to the pig-
ment epithelium requires a humoral transmitter and
may be affected by several neurotropic intermediates
and/or pharmaceuticals.n' 59, 68, 69, 76, 130, 132, 133, 153
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A gradual loss of the light peak of the EOG has becn
observed in Irish setters affected by the hereditary
canine ceroid lipofuscinosis, which is similar to Bat-
ten’s disease.''

FAST OSCILLATION

The fast oscillation of the EQG> 80 126 1+ 162 jg
discernible by the initial decrease™ ®® in potential
following stimulation with light. This decrease and
return to baseline happens over a I-minute period
and blends into the light rise of the slow oscillation
of the EOG. Similar but with opposite polarity is the
initial response of the fast oscillation of the EOG to
dark; this contrasts with an increasc in potential dur-
ing the first minute followed by the dark trough of
the slow oscillation.

The fast oscillation is critically damped so that
only the first half-period is recognizable when test-
ing the EOG by means of a step increase in light in-
tensity. By varying the repetition rates of on-off
phases of the stimulating light, the fast oscillation
can be brought into resonance (Fig 39-7). The opti-
mal duration of repeated light stimuli occurs be-
tween 1 and 1.25 minutes. The amplitude of the fast
oscillation is dependent on light intensity.'*® Super-
position of two stimuli, one timed to evoke a slow
oscillation and another to maximize the fast oscilla-
tion, reveals that the fast oscillation is suppressed
during the light phase that evokes the slow oscilla-
tion,”” an observation that has been disputed.®® The
amplitude of the fast oscillation is not affected by the
amplitude of the slow concomitantly elicited oscilla-
tion when the latter is triggered by on-off phases of
light of about 1 minute each, which optimizes the
fast oscillation. Results from experiments on rabbits,
with indirectly recording the EOG, suggest that the
fast oscillation is more resistant to hypoxia than is

the slow oscillation.®? The origin of the fast oscilla-
tion has been attributed to ionic changes across the
pigment epithelium.*® ** 7! The c-wave of the ERG
correlates well with the fast oscillation of the
EOG. !4 125,129

CLINICAL APPLICATIONS

The use of the EOG to diagnose ocular dis-
orderg® % 163739119 hag oained less attention than
has testing the ERG. Several causes have been sug-
gested, some are avoidable. The EOG is a mass re-
sponse, and the cellular mechanism(s) has only re-
cently been thoroughly researched. The EOG
develops slowly, and its testing is tedious. The EOG
is phenomenologically simple, and the response pa-
rameters are seemingly obvious: amplitude and time
to peak. As mentioned previously, several more
parameters could be used for a more detailed analy-
sis.” ”! Additionally, subliminal encroachment of
light changes on the EOG has been shown to avoid
triggering an oscillation'*?; this procedure permits
shortening the time nceded to attain a steady state.
The EOG response is nonlinear when tested by
means of a sinusoidal light stimulus.'” The correla-
tion between eye movement, for indirectly recording
the EOG, and the EOG potential is also nonlinear.'"”

The clinically recorded EOG is important as a test
for abnormalities of the pigment epithelium. The
EOG is paramount for the diagnosis of Best’s disease
(see Chapter 91). The EOG might be useful as a test
for all conditions manifested as “retinitis pigmen-
tosa.” Controversy surrounds the validity of EOG
tests adjunct to the diagnosis of choroidal mela-
noma.'' Earlier reports on the predictive value of
the EOG test in patients using chloroquine for the
treatment of rheumatoid arthritis or lupus erythema-
tosus™ M 755 77 have lost some of their impor-
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FIG 39-7.

Fast oscillation of the EOG superimposed on a slow oscillation. During 90 minutes of dark adaptation, the EOG oscillates
slowly and reaches a quasi—steady state. Thereafter, an incandescent light of about 1,000 lux at eye level is turned on and off
every 70 seconds. The abscissa is divided in 30-second intervals, and the lines on the ordinate indicate 50 V. The lower

tracing marks the light stimulus.




tance since chloroquine has been replaced by hy-
droxychloroquine, a drug significantly less toxic.®!
Additional applications of the EOG for the diagnosis
of retinal dystrophies appeared in recent publica-
lions. 3 52 122 124 131 H4L160,173, 175 The metabolism
of the inner retina is supported by the central retinal
artery, while the outer retina and the pigment epi-
thelium are dependent on the choroidal circulation.
The central retinal artery has been interrupted in an-
imals, and the EOG response was found to be mark-
cdly reduced.*® 197 131107 A similarly diminished re-
sponse of the slow oscillation of the human EOG

has been observed in ischemia from central retinal

artery occlusion'?"” '¥7; the fast oscillation, on the

other hand, remained unaffected.'™®
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